1
|
Chen CC, Hsu LW, Chen KD, Chiu KW, Kung CP, Li SR, Goto S, Chen CL, Huang KT. Extracellular calreticulin regulates fibrogenic and immunogenic properties of hepatic stellate cells. Int Immunopharmacol 2025; 148:114129. [PMID: 39862632 DOI: 10.1016/j.intimp.2025.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis. Calreticulin (CRT) is a molecular chaperone mainly located in the endoplasmic reticulum (ER), regulating protein folding and calcium homeostasis. Recently, CRT has gained much attention for its role outside the ER, particularly at the cell surface and extracellular space, acting as an immunomodulatory protein. The current study investigates the role of extracellular CRT in hepatic injury and its effects on HpSCs. Elevated levels of circulating CRT were observed in mouse models of liver injury, suggesting that hepatic injury may trigger CRT release. Extracellular CRT was found to moderately inhibit HpSC viability and induce morphological changes. Additionally, CRT treatment led to a decrease in α-smooth muscle actin and an upregulation of matrix metalloproteinase-2 and -9, indicating a potential fibrolytic effect. Immunomodulatory activities of CRT were also noted, as it increased cytokine expression in both macrophages and HpSCs. These effects were partially mediated through low-density lipoprotein receptor-related protein 1 (LRP1), as evidenced by altered cytokine expression upon co-treatment with a known LRP1 ligand receptor-associated protein (RAP). Overall, this study elucidates the complex role of extracellular CRT in liver injury and its potential impact on HpSC behavior and immune responses.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; School of Medicine Chang Gung University Taoyuan Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Kuang-Den Chen
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; Institute for Translational Research in Biomedicine Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - King-Wah Chiu
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; Division of Hepato-Gastroenterology Department of Internal Medicine Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Chao-Pin Kung
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; Institute for Translational Research in Biomedicine Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Shu-Rong Li
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Shigeru Goto
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; Nobeoka Medical Check Center Fukuoka Institute of Occupational Health Nobeoka Japan
| | - Chao-Long Chen
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center Department of General Surgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan; Institute for Translational Research in Biomedicine Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan.
| |
Collapse
|
2
|
Pérez-Lázaro S, Barrio T, Bravo SB, Sevilla E, Otero A, Chantada-Vázquez MDP, Martín-Burriel I, Requena JR, Badiola JJ, Bolea R. New preclinical biomarkers for prion diseases in the cerebrospinal fluid proteome revealed by mass spectrometry. Vet Q 2024; 44:1-15. [PMID: 39520708 PMCID: PMC11552261 DOI: 10.1080/01652176.2024.2424837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Current diagnostic methods for prion diseases only work in late stages of the disease when neurodegeneration is irreversible. Therefore, biomarkers that can detect the disease before the onset of clinical symptoms are necessary. High-throughput discovery proteomics is of great interest in the search for such molecules. Here we used mass spectrometry to analyse the cerebrospinal fluid proteome in an animal prion disease: preclinical and clinical sheep affected with natural scrapie, and healthy sheep. Interestingly, we found 46 proteins in the preclinical stage that were significantly altered (p < 0.01) compared to healthy sheep, mainly associated with biological processes such as stress and inflammatory responses. Five of them were selected for validation by enzyme-like immunosorbent assay: synaptotagmin binding, cytoplasmic RNA interacting protein (SYNCRIP), involved in nucleic acid metabolism; phospholipase D3 (PLD3) and cathepsin D (CTSD), both related to lysosomal apoptosis; complement component 4 (C4), an element of the classical immune response; and osteopontin (SPP1), a proinflammatory cytokine. These proteins significantly increased in the preclinical stage and maintained their levels in the clinical phase, except for CTSD, whose concentration returned to basal levels in the clinical group. Further research is ongoing to explore their potential as preclinical biomarkers of prion diseases.
Collapse
Affiliation(s)
- Sonia Pérez-Lázaro
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Tomás Barrio
- UMR Institut National de La Recherche Pour L’Agriculture, L’Alimentation Et L’Environment (INRAE), École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), Toulouse, France
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Eloisa Sevilla
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Alicia Otero
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - María del Pilar Chantada-Vázquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Inmaculada Martín-Burriel
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Juan J. Badiola
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Rosa Bolea
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| |
Collapse
|
3
|
Naughton SX, Yang EJ, Iqbal U, Trageser K, Charytonowicz D, Masieri S, Estill M, Wu H, Raval U, Lyu W, Wu QL, Shen L, Simon J, Sebra R, Pasinetti GM. Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness. J Neuroinflammation 2024; 21:222. [PMID: 39272155 PMCID: PMC11396632 DOI: 10.1186/s12974-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiting Lyu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
5
|
Peng Z, Chen J, Liu Y, Li D, Li Y, Zhang Q, Chen C, Zhang Y, Yao J, Wang S, Lin Q, Ruan Y. Optical biosensor based on weak measurement for ultra-sensitive detection of calreticulin in human serum. BIOMEDICAL OPTICS EXPRESS 2024; 15:715-724. [PMID: 38404297 PMCID: PMC10890857 DOI: 10.1364/boe.514443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
A novel real-time optical phase sensing method based on the Mach-Zehnder interference principle has been proposed for the detection of calreticulin (CRT) levels in human serum samples. In this approach, anti-CRT antibodies are utilized to capture CRT molecules in serum, leading to a phase shift in both the measuring and reference arms of the system. By employing the concept of weak amplification within the framework of weak measurements, it becomes feasible to continuously monitor the response of CRT in real-time, allowing for the precise determination of serum CRT content at the picomolar level. Our achievement may pave the way in establishing CRT as a diagnostic biomarker for a wide range of medical applications, including rheumatoid arthritis.
Collapse
Affiliation(s)
- Zhikang Peng
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiali Chen
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yufei Liu
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dongmei Li
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yixiao Li
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qihao Zhang
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chaoyi Chen
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Jia Yao
- Department of Breast Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Shuqian Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Qiang Lin
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yi Ruan
- Key Laboratory of Quantum Precision Measurement of Zhejiang Province, Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
6
|
Reid KM, Brown GC. LRPAP1 is released from activated microglia and inhibits microglial phagocytosis and amyloid beta aggregation. Front Immunol 2023; 14:1286474. [PMID: 38035103 PMCID: PMC10687467 DOI: 10.3389/fimmu.2023.1286474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1), also known as receptor associated protein (RAP), is an endoplasmic reticulum (ER) chaperone and inhibitor of LDL receptor related protein 1 (LRP1) and related receptors. These receptors have dozens of physiological ligands and cell functions, but it is not known whether cells release LRPAP1 physiologically at levels that regulate these receptors and cell functions. We used mouse BV-2 and human CHME3 microglial cell lines, and found that microglia released nanomolar levels of LRPAP1 when inflammatory activated by lipopolysaccharide or when ER stressed by tunicamycin. LRPAP1 was found on the surface of live activated and non-activated microglia, and anti-LRPAP1 antibodies induced internalization. Addition of 10 nM LRPAP1 inhibited microglial phagocytosis of isolated synapses and cells, and the uptake of Aβ. LRPAP1 also inhibited Aβ aggregation in vitro. Thus, activated and stressed microglia release LRPAP1 levels that can inhibit phagocytosis, Aβ uptake and Aβ aggregation. We conclude that LRPAP1 release may regulate microglial functions and Aβ pathology, and more generally that extracellular LRPAP1 may be a physiological and pathological regulator of a wide range of cell functions.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Melnikova A, Ishii H, Tamatani T, Hattori T, Takarada-Iemata M, Hori O. Neuroprotective role of calreticulin after spinal cord injury in mice. Neurosci Res 2023; 195:29-36. [PMID: 37295503 DOI: 10.1016/j.neures.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in the pathology of spinal cord injury (SCI). To determine the role of the UPR-target molecule in the pathophysiology of SCI, we analyzed the expression and the possible function of calreticulin (CRT), a molecular chaperone in the ER with high Ca2+ binding capacity, in a mouse SCI model. Spinal cord contusion was induced in T9 by using the Infinite Horizon impactor. Quantitative real-time polymerase chain reaction confirmed increase of Calr mRNA after SCI. Immunohistochemistry revealed that CRT expression was observed mainly in neurons in the control (sham operated) condition, while it was strongly observed in microglia/macrophages after SCI. Comparative analysis between wild-type (WT) and Calr+/- mice revealed that the recovery of hindlimb locomotion was reduced in Calr+/- mice, based on the evaluation using the Basso Mouse Scale and inclined-plane test. Immunohistochemistry also revealed more accumulation of immune cells in Calr+/- mice than in WT mice, at the epicenter 3 days and at the caudal region 7 days after SCI. Consistently, the number of damaged neuron was higher in Calr+/- mice at the caudal region 7 days after SCI. These results suggest a regulatory role of CRT in the neuroinflammation and neurodegeneration after SCI.
Collapse
Affiliation(s)
- Anastasiia Melnikova
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
8
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Álvarez-Chaver P, Diz-Chaves Y, Gonzalez-Freiria N, Martín-Forero-Maestre M, Fernández-Feijoo CD, Suárez-Albo M, Fernández-Lorenzo JR, Guisán AC, Olivares JM, Spuch C. Proteomic analysis of exosomes derived from human mature milk and colostrum of mothers with term, late preterm, or very preterm delivery. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4905-4917. [PMID: 37718950 DOI: 10.1039/d3ay01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, Vigo, 36310, Spain
| | - Paula Álvarez-Chaver
- Structural Determination, Proteomic and Genomic Service, CACTI, University of Vigo, Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, Vigo, 36312, Spain
| | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| |
Collapse
|
9
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Diz-Chaves Y, González-Freiria N, Suárez-Albo M, Martín-Forero-Maestre M, Durán Fernández-Feijoo C, Fernández-Lorenzo JR, Concheiro Guisán A, Olivares JM, Spuch C. Human Breast Milk microRNAs, Potential Players in the Regulation of Nervous System. Nutrients 2023; 15:3284. [PMID: 37513702 PMCID: PMC10384760 DOI: 10.3390/nu15143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, 36312 Vigo, Spain
| | | | | | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| |
Collapse
|
10
|
Naiyer S, Dwivedi L, Singh N, Phulera S, Mohan V, Kamran M. Role of Transcription Factor BEND3 and Its Potential Effect on Cancer Progression. Cancers (Basel) 2023; 15:3685. [PMID: 37509346 PMCID: PMC10377563 DOI: 10.3390/cancers15143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BEND3 is a transcription factor that plays a critical role in the regulation of gene expression in mammals. While there is limited research on the role of BEND3 as a tumor suppressor or an oncogene and its potential role in cancer therapy is still emerging, several studies suggest that it may be involved in both the processes. Its interaction and regulation with multiple other factors via p21 have already been reported to play a significant role in cancer development, which serves as an indication of its potential role in oncogenesis. Its interaction with chromatin modifiers such as NuRD and NoRC and its role in the recruitment of polycomb repressive complex 2 (PRC2) are some of the additional events indicative of its potential role in cancer development. Moreover, a few recent studies indicate BEND3 as a potential target for cancer therapy. Since the specific mechanisms by which BEND3 may contribute to cancer progression are not yet fully elucidated, in this review, we have discussed the possible pathways BEND3 may take to serve as an oncogenic driver or suppressor.
Collapse
Affiliation(s)
- Sarah Naiyer
- Department of Biomedical Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lalita Dwivedi
- Faculty of Science, Department of Biotechnology, Invertis University, Bareilly 243122, UP, India
| | - Nishant Singh
- Cell and Gene Therapy Division Absorption System, Exton, PA 19341, USA
| | - Swastik Phulera
- Initium Therapeutics, 22 Strathmore Rd., STE 453, Natick, MA 01760, USA
| | - Vijay Mohan
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Mohammad Kamran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
11
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
12
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|