1
|
He M, Hettinghouse A, Bi Y, Chen Y, Liu C. Progranulin mediates the onset of pristane induced systemic lupus erythematosus. Adv Rheumatol 2024; 64:67. [PMID: 39252120 DOI: 10.1186/s42358-024-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUNDS Progranulin (PGRN) is a growth factor-like molecule with diverse roles in homeostatic and pathogenic processes including the control of immune and inflammatory responses. Pathogenic inflammation is a hallmark of systemic lupus erythematosus (SLE) and elevated serum levels of PGRN has been evaluated as a biomarker of disease activity in SLE. However, the role of PGRN in SLE has not been fully investigated. This study is aimed to determine the potential involvements of PGRN in SLE. METHODS Wild type (WT) and PGRN knockout (PGRN-/-) C57BL/6 mice received intraperitoneal injection of pristane for induction of a murine model of SLE. Sera were collected every biweekly and levels of anti-dsDNA antibody, IgG, and inflammatory factors were measured. Mice were sacrificed 5 months later and the renal lesions, as well as the proportions of T cell subtypes in the spleen were analyzed. RESULTS Following exposure to pristane, PGRN-/- mice generated significantly lower levels of anti-dsDNA antibody and IgG relative to WT mice. PGRN-/- mouse kidneys had less IgG and collagen deposition compared with WT mice after pristane injection. CONCLUSION The results indicate that PGRN participates in inflammatory response and renal damage in pristane induced SLE models, suggesting that PGRN mediates the onset of SLE.
Collapse
Affiliation(s)
- Michun He
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA.
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Yufei Bi
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
2
|
Rahman MF, Kurlovs AH, Vodnala M, Meibalan E, Means TK, Nouri N, de Rinaldis E, Savova V. Immune disease dialogue of chemokine-based cell communications as revealed by single-cell RNA sequencing meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603936. [PMID: 39071425 PMCID: PMC11275869 DOI: 10.1101/2024.07.17.603936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Immune-mediated diseases are characterized by aberrant immune responses, posing significant challenges to global health. In both inflammatory and autoimmune diseases, dysregulated immune reactions mediated by tissue-residing immune and non-immune cells precipitate chronic inflammation and tissue damage that is amplified by peripheral immune cell extravasation into the tissue. Chemokine receptors are pivotal in orchestrating immune cell migration, yet deciphering the signaling code across cell types, diseases and tissues remains an open challenge. To delineate disease-specific cell-cell communications involved in immune cell migration, we conducted a meta-analysis of publicly available single-cell RNA sequencing (scRNA-seq) data across diverse immune diseases and tissues. Our comprehensive analysis spanned multiple immune disorders affecting major organs: atopic dermatitis and psoriasis (skin), chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (lung), ulcerative colitis (colon), IgA nephropathy and lupus nephritis (kidney). By interrogating ligand-receptor (L-R) interactions, alterations in cell proportions, and differential gene expression, we unveiled intricate disease-specific and common immune cell chemoattraction and extravasation patterns. Our findings delineate disease-specific L-R networks and shed light on shared immune responses across tissues and diseases. Insights gleaned from this analysis hold promise for the development of targeted therapeutics aimed at modulating immune cell migration to mitigate inflammation and tissue damage. This nuanced understanding of immune cell dynamics at the single-cell resolution opens avenues for precision medicine in immune disease management.
Collapse
Affiliation(s)
- Mouly F. Rahman
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Andre H. Kurlovs
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Munender Vodnala
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Elamaran Meibalan
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Terry K. Means
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA 02141, United States
| | - Nima Nouri
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Emanuele de Rinaldis
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Virginia Savova
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| |
Collapse
|
3
|
Tian N, Cheng H, Du Y, Wang X, Lei Y, Liu X, Chen M, Xu Z, Wang L, Yin H, Fu R, Li D, Zhou P, Lu L, Yin Z, Dai SM, Li B. Cannabinoid receptor 2 selective agonist alleviates systemic sclerosis by inhibiting Th2 differentiation through JAK/SOCS3 signaling. J Autoimmun 2024; 147:103233. [PMID: 38797049 DOI: 10.1016/j.jaut.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.
Collapse
Affiliation(s)
- Na Tian
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Cheng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China; Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yu Du
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Lei
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinnan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Miao Chen
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhan Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hanlin Yin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China.
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China; Department of Oncology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
5
|
López Ruiz A, Slaughter ED, Kloxin AM, Fromen CA. Bridging the gender gap in autoimmunity with T-cell-targeted biomaterials. Curr Opin Biotechnol 2024; 86:103075. [PMID: 38377884 DOI: 10.1016/j.copbio.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Autoimmune diseases are caused by malfunctions of the immune system and generally impact women at twice the frequency of men. Many of the most serious autoimmune diseases are accompanied by a dysregulation of T-cell phenotype, both regarding the ratio of CD4+ to CD8+ T-cells and proinflammatory versus regulatory phenotypes. Biomaterials, in the form of particles and hydrogels, have shown promise in ameliorating this dysregulation both in vivo and ex vivo. In this review, we explore the role of T-cells in autoimmune diseases, particularly those with high incidence rates in women, and evaluate the promise and efficacy of innovative biomaterial-based approaches for targeting T-cells.
Collapse
Affiliation(s)
- Aida López Ruiz
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Eric D Slaughter
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - April M Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Material Science and Engineering, University of Delaware, Newark, DE, United States.
| | - Catherine A Fromen
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
Layhadi JA, Lalioti A, Palmer E, van Zelm MC, Wambre E, Shamji MH. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:59-66. [PMID: 37996041 DOI: 10.1016/j.jaip.2023.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Allergen immunotherapy (AIT) remains to be the only disease-modifying treatment for IgE-mediated allergic diseases such as allergic rhinitis. It can provide long-term clinical benefits when given for 3 years or longer. Mechanisms of immune tolerance induction by AIT are underscored by the modulation of several compartments within the immune system. These include repair of disruption in epithelial barrier integrity, modulation of the innate immune compartment that includes regulatory dendritic cells and innate lymphoid cells, and adaptive immune compartments such as induction of regulatory T and B cells. Altogether, these are also associated with the dampening of allergen-specific TH2 and T follicular helper cell responses and subsequent generation of blocking antibodies. Although AIT is effective in modifying the immune response, there is a lack of validated and clinically relevant biomarkers that can be used to monitor desensitization, efficacy, and the likelihood of response, all of which can contribute to accelerating personalized medication and increasing patient care. Candidate biomarkers comprise humoral, cellular, metabolic, and in vivo biomarkers; however, these are primarily studied in small trials and require further validation. In this review, we evaluate the current candidates of biomarkers of AIT and how we can implement changes in future studies to help us identify clinically relevant biomarkers of safety, compliance, and efficacy.
Collapse
Affiliation(s)
- Janice A Layhadi
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anastasia Lalioti
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Elizabeth Palmer
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Menno C van Zelm
- Department of Immunology, Monash University and Alfred Health, Melbourne, Victoria, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Erik Wambre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Liu Y, Zhang Z, Kang Z, Zhou XJ, Liu S, Guo S, Jin Q, Li T, Zhou L, Wu X, Wang YN, Lu L, He Y, Li F, Zhang H, Liu Y, Xu H. Interleukin 4-driven reversal of self-reactive B cell anergy contributes to the pathogenesis of systemic lupus erythematosus. Ann Rheum Dis 2023; 82:1444-1454. [PMID: 37567607 DOI: 10.1136/ard-2023-224453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES Reactivation of anergic autoreactive B cells (BND cells) is a key aetiological process in systemic lupus erythematosus (SLE), yet the underlying mechanism remains largely elusive. This study aimed to investigate how BND cells participate in the pathogenesis of SLE and the underlying mechanism. METHODS A combination of phenotypical, large-scale transcriptome and B cell receptor (BCR) repertoire profiling were employed at molecular and single cell level on samples from healthy donors and patients with SLE. Isolated naïve B cells from human periphery blood were treated with anti-CD79b mAb in vitro to induce anergy. IgM internalisation was tracked by confocal microscopy and was qualified by flow cytometer. RESULTS We characterised the decrease and disruption of BND cells in SLE patients and demonstrated IL-4 as an important cytokine to drive such pathological changes. We then elucidated that IL-4 reversed B cell anergy by promoting BCR recycling to the cell surface via STAT6 signalling. CONCLUSIONS We demonstrated the significance of IL-4 in reversing B cell anergy and established the scientific rationale to treat SLE via blocking IL-4 signalling, also providing diagnostic and prognostic biomarkers to identify patients who are most likely going to benefit from such treatments.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Shujun Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan-Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Liangjing Lu
- Department of Rheumatology and Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanran He
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Fubin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Yuncai Liu
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Jafari N, Gheitasi R, Khorasani HR, Golpour M, Mehri M, Nayeri K, Pourbagher R, Mostafazadeh M, Kalali B, Mostafazadeh A. Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts. Heliyon 2023; 9:e19238. [PMID: 37674821 PMCID: PMC10477462 DOI: 10.1016/j.heliyon.2023.e19238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs) using Nano-LC-ESI-tandem mass spectrometry. This analysis contributes to a better understanding of the underlying molecular mechanisms of chronic inflammation and cancer, which are intrinsically accompanied by growth factor deficiency.The proteomes of starved fibroblasts and PBMCs consisted of 307 and 294 proteins, respectively, which are involved in lymphocyte migration, complement activation, inflammation, acute phase response, and immune regulation. Starved fibroblasts predominantly produced extracellular matrix-related proteins such as collagen/collagenase, while PBMCs produced focal adhesion-related proteins like beta-parvin and vinculin which are involved in lymphocyte migration. PBMCs produced a more diverse set of inflammatory molecules like heat shock proteins, while fibroblasts produced human leukocytes antigen-G and -E that are known as main immunomodulatory molecules. Fifty-four proteins were commonly found in both proteomes, including serum albumin, amyloid-beta, heat shock cognate 71 kDa, and complement C3. GeneMANIA bioinformatic tool predicted 418 functions for PBMCs, including reactive oxygen species metabolic processes and 241 functions for starved fibroblasts such as antigen processing and presentation including non-classical MHC -Ib pathway, and negative regulation of the immune response. Protein-protein interactions network analysis indicated the immunosuppressive function for starved fibroblasts-derived human leucocytes antigen-G and -E. Moreover, in an in vitro model of allogeneic transplantation, the immunosuppressive activity of starved fibroblasts was experimentally documented. Conclusion Under serum starvation-induced metabolic stress, both PBMCs and fibroblasts produced molecules like heat shock proteins and amyloid-beta, which can have pathogenic roles in auto-inflammatory diseases such as rheumatoid arthritis, type 1 diabetes mellitus, systemic lupus erythematosus, aging, and cancer. However, starved fibroblasts showed immunosuppressive activity in an in vitro model of allogeneic transplantation, suggesting their potential to modify such adverse reactions by down-regulating the immune system.
Collapse
Affiliation(s)
- Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Gheitasi
- Institutes for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mehri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Behnam Kalali
- Department of Medicine II, Klinikum Grosshadern, LMU University, 81377, Munich, Germany
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Chen F, Wu Y, Ren G, Wen S. Impact of T helper cells on bone metabolism in systemic lupus erythematosus. Hum Immunol 2023:S0198-8859(23)00065-4. [PMID: 37100689 DOI: 10.1016/j.humimm.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease affecting multiple organs and tissues, is often complicated by musculoskeletal diseases. T helper cells (Th) play an important role in mediating lupus. With the rise of osteoimmunology, more studies have shown shared molecules and interactions between the immune system and bones. Th cells are vital in the regulation of bone metabolism by directly or indirectly regulating bone health by secreting various cytokines. Therefore, by describing the regulation of Th cells (including Th1, Th2, Th9, Th17, Th22, regulatory T cells (Treg), and follicular T helper cells (Tfh) in bone metabolism in SLE, this paper offers certain theoretical support for abnormal bone metabolism in SLE and provides new prospects for future drug development.
Collapse
Affiliation(s)
- Feng Chen
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China
| | - Yukun Wu
- Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530011, China
| | - Guowu Ren
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China.
| | - Shuaibo Wen
- Guangxi University of Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region 530001, China
| |
Collapse
|
11
|
Lioulios G, Mitsoglou Z, Fylaktou A, Xochelli A, Christodoulou M, Stai S, Moysidou E, Konstantouli A, Nikolaidou V, Papagianni A, Stangou M. Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients. Int J Mol Sci 2022; 23:ijms232213928. [PMID: 36430418 PMCID: PMC9694088 DOI: 10.3390/ijms232213928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lupus nephritis (LN), a chronic inflammatory disease, is characterized by the substantial disruption of immune homeostasis. This study examines its effects on the T lymphocyte phenotype and, particularly, its senescence- and exhaustion-related immune alterations. T cell subpopulations were determined with flow cytometry in 30 LN patients and 20 healthy controls (HCs), according to the expression of senescence- (CD45RA, CCR7, CD31, CD28, CD57), and exhaustion- (PD1) related markers. The immune phenotype was associated with disease activity and renal histology. LN patients were characterized by pronounced lymphopenia, mainly affecting the CD4 compartment, with a concurrent reduction in the naïve, central and effector memory subsets compared to the HCs. In the CD8 compartment, the naïve subsets were significantly lower than that of the HCs, but a shift in the T cells occurred towards the central memory population. CD4+PD1+ and CD8+PD1+ cells were increased in the LN patients compared to the HCs. However, in CD4 T cells, the increase was limited to CD45RA+, whereas in CD8 T cells, both CD45RA+ and CD45RA- subsets were affected. Disease activity was correlated with CD4+PD1+ and highly differentiated CD4+CD28-CD57+ cells. Histology was only associated with CD4 T cell disturbances, with stage IV presenting reduced naïve and increased senescent subsets. Exhausted T lymphocyte subpopulations predominate within LN patients, while the T cell phenotype varies depending on disease activity.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
- Correspondence:
| | - Zoi Mitsoglou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Eleni Moysidou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Afroditi Konstantouli
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| |
Collapse
|
12
|
Xiang S, Zhang J, Zhang M, Qian S, Wang R, Wang Y, Xiang Y, Ding X. Imbalance of helper T cell type 1, helper T cell type 2 and associated cytokines in patients with systemic lupus erythematosus: A meta-analysis. Front Pharmacol 2022; 13:988512. [PMID: 36249802 PMCID: PMC9556996 DOI: 10.3389/fphar.2022.988512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Th1 and Th2 cells and their associated cytokines function in the pathogenesis of systemic lupus erythematosus (SLE), but their exact roles are uncertain. We performed a meta-analysis to examine the relationship of these cells and cytokines with SLE. Methods: Multiple databases were searched to identify publications that reported the percentages of Th1 and Th2 cells and their associated cytokines in SLE patients and healthy controls (HCs). Meta-analysis was performed using Stata MP version 16. Results: SLE patients had a lower percentage of Th1 cells, a higher percentage of Th2 cells, and higher levels of Th1- and Th2-associated cytokines than HCs. SLE treatments normalized some but not all of these indicators. For studies in which the proportion of females was less than 94%, the percentage of Th2 cells and the level of IL-10 were higher in patients than HCs. SLE patients who had abnormal kidney function and were younger than 30 years old had a higher proportion of Th1 cells than HCs. SLE patients more than 30 years old had a higher level of IL-6 than HCs. Conclusion: Medications appeared to restore the balance of Th1 cells and other disease indicators in patients with SLE. Gender and age affected the levels of Th1 and Th2 cells, and the abnormally elevated levels of Th2 cells appear to be more pronounced in older patients and males. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022296540].
Collapse
Affiliation(s)
- Shate Xiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengge Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhai Qian
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongyun Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingshi Xiang
- First Clinical School of Medicine, Nanjing Medical University, Nanjing, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xinghong Ding,
| |
Collapse
|