1
|
Richardson KC, Jung K, Matsubara JA, Choy JC, Granville DJ. Granzyme B in aging and age-related pathologies. Trends Mol Med 2024; 30:1165-1179. [PMID: 39181801 DOI: 10.1016/j.molmed.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Aging is a major risk factor for pathologies that manifest later in life. Much attention is devoted towards elucidating how prolonged environmental exposures and inflammation promote biological (accelerated) tissue aging. Granzymes, a family of serine proteases, are increasingly recognized for their emerging roles in biological aging and disease. Widely recognized as intracellular mediators of cell death, granzymes, particularly granzyme B (GzmB), also accumulate in the extracellular milieu of tissues with age, contributing to chronic tissue injury, inflammation, and impaired healing. Consequently, this has prompted the field to reconsider how GzmB regulation, accumulation, and proteolysis impact health and disease with age. While GzmB is observed in numerous age-related conditions, the current review focuses on mechanistic studies where proof-of-concept has been forwarded.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Department of Pathology and Laboratory Medicine, British Columbia Professional Firefighters' Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Yu Y, Tong S, Liu T, Cai Y, Song Y, Zhou H, Jiang R. Exploring the causal role of immune cells in cerebral aneurysm through single-cell transcriptomics and Mendelian randomization analysis. Clin Exp Immunol 2024; 217:195-203. [PMID: 38661482 PMCID: PMC11239559 DOI: 10.1093/cei/uxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebral aneurysm (CA) represents a significant clinical challenge, characterized by pathological dilation of cerebral arteries. Recent evidence underscores the crucial involvement of immune cells in CA pathogenesis. This study aims to explore the complex interplay between immune cells and CA formation. We analyzed single-cell RNA sequencing data from the GSE193533 dataset, focusing on unruptured CA and their controls. Comprehensive cell-type identification and pseudo-time trajectory analyses were conducted to delineate the dynamic shifts in immune cell populations. Additionally, a two-sample Mendelian randomization (MR) approach was employed to investigate the causal influence of various immunophenotypes on CA susceptibility and the reciprocal effect of CA formation on immune phenotypes. Single-cell transcriptomic analysis revealed a progressive loss of vascular smooth muscle cells (VSMCs) and an increase in monocytes/macrophages (Mo/MΦ) and other immune cells, signifying a shift from a structural to an inflammatory milieu in CA evolution. MR analysis identified some vital immunophenotypes, such as CD64 on CD14+ CD16+ monocytes (OR: 1.236, 95% CI: 1.064-1.435, P = 0.006), as potential risk factors for CA development, while others, like CD28- CD8br %CD8br (OR: 0.883, 95% CI: 0.789-0.988, P = 0.030), appeared protective. Reverse MR analysis demonstrated that CA formation could modulate specific immunophenotypic expressions, highlighting a complex bidirectional interaction between CA pathology and immune response. This study underscores the pivotal role of immune cells in this process through the integration of single-cell transcriptomics with MR analysis, offering a comprehensive perspective on CA pathogenesis, and potentially guiding future therapeutic strategies targeting specific immune pathways.
Collapse
Affiliation(s)
- Yunhu Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Medical University, Tianjin Key Laboratory of Injury and Regenerative Medicine of Nervous System, Tianjin Neurological Institute, Tianjin, China
- Department of Neurosurgery, the People’s Hospital of HongHuaGang District of ZunYi, Zunyi, China
| | - Shiao Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Medical University, Tianjin Key Laboratory of Injury and Regenerative Medicine of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Medical University, Tianjin Key Laboratory of Injury and Regenerative Medicine of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Yunpeng Cai
- Department of Neurosurgery, the People’s Hospital of HongHuaGang District of ZunYi, Zunyi, China
| | - Yuanmei Song
- Department of Neurosurgery, the People’s Hospital of HongHuaGang District of ZunYi, Zunyi, China
| | - Hang Zhou
- Department of Neurosurgery, the People’s Hospital of HongHuaGang District of ZunYi, Zunyi, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Medical University, Tianjin Key Laboratory of Injury and Regenerative Medicine of Nervous System, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
3
|
Ji H, Li Y, Sun H, Chen R, Zhou R, Yang Y, Wang R, You C, Xiao A, Yi L. Decoding the Cell Atlas and Inflammatory Features of Human Intracranial Aneurysm Wall by Single-Cell RNA Sequencing. J Am Heart Assoc 2024; 13:e032456. [PMID: 38390814 PMCID: PMC10944067 DOI: 10.1161/jaha.123.032456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Intracranial aneurysm (IA) is common and occasionally results in life-threatening hemorrhagic strokes. However, the cell architecture and inflammation in the IA dome remain less understood. METHODS AND RESULTS Single-cell RNA sequencing was performed on ruptured and unruptured human IA domes for delineating the cell atlas, gene expression perturbations, and inflammation features. Two external bulk mRNA sequencing-based data sets and serological results of 126 patients were collected for validation. As a result, a total of 21 332 qualified cells were captured. Vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and pericytes, were assigned in extremely sparse numbers (4.84%), and were confirmed by immunofluorescence staining. Pericytes, characterized by ABCC9 and HIGD1B, were identified in the IA dome for the first time. Abundant immune cells were identified, with the proportion of monocytes/macrophages and neutrophils being remarkably higher in ruptured IA. The lymphocyte compartment was also thoroughly categorized. By leveraging external data sets and machine learning algorithms, macrophages were robustly associated with IA rupture, irrespective of their polarization status. The single nucleotide polymorphism rs2280543, which is identified in East Asian populations, was associated with macrophage metabolic reprogramming through regulating TALDO1 expression. CONCLUSIONS This study provides insights into the cellular architecture and inflammatory features in the IA dome and may enlighten novel therapeutics for unruptured IA.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yue Li
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Haogeng Sun
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Ruiqi Chen
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yongbo Yang
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Anqi Xiao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Liu Yi
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
De Monte L, Clemente F, Ruggiero E, Pini R, Ceraolo MG, Schiavo Lena M, Balestrieri C, Lazarevic D, Belfiori G, Crippa S, Balzano G, Falconi M, Doglioni C, Bonini C, Reni M, Protti MP. Pro-tumor Tfh2 cells induce detrimental IgG4 production and PGE 2-dependent IgE inhibition in pancreatic cancer. EBioMedicine 2023; 97:104819. [PMID: 37776595 PMCID: PMC10542011 DOI: 10.1016/j.ebiom.2023.104819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and it is characterized by predominant pro-tumor Th2-type inflammation. T follicular helper (Tfh) cells are relevant immunoregulators in cancer, and often correlate with better survival. How the Th2-skewed microenvironment in PDAC modulates the differentiation of Tfh cells and their immunoregulatory function is unknown. METHODS We carried out high-dimensional flow cytometry and T-cell receptor- and RNA-sequencing, as well as bioinformatics, immunohistochemistry and in vitro mechanistic studies. FINDINGS We identified Tfh1-, Tfh2-, and Tfh17-like cell clusters in the blood, tumors and tumor-draining lymph-nodes (TDLNs) of chemo-naïve PDAC patients and showed that high percentages of Tfh2 cells within the tumor tissue and TDLNs correlated with reduced patient survival. Moreover, only Tfh2 cells were highly activated and were reduced in frequency in patients who responded to neoadjuvant chemotherapy. RNA-sequencing analysis of immunoglobulin expression showed that tumor and TDLN samples expressed all immunoglobulin (IGH) isotypes apart from IGHE. Consistent with these findings, Tfh2 cells differentiated in vitro by tumor microenvironment-conditioned dendritic cells promoted the production of anti-inflammatory IgG4 antibodies by co-cultured B cells, dependent on IL-13. Moreover, unexpectedly, Tfh2 cells inhibited the secretion of pro-inflammatory IgE, dependent on prostaglandin E2. INTERPRETATION Our results indicate that in PDAC, highly activated pro-tumor Tfh2 favor anti-inflammatory IgG4 production, while inhibit pro-inflammatory IgE. Thus, targeting the circuits that drive Tfh2 cells, in combination with chemotherapy, may re-establish beneficial anti-tumor Tfh-B cell interactions and facilitate more effective treatment. FUNDING Research grants from the Italian Association for Cancer Research (AIRC) IG-19119 to MPP and the AIRC Special Program in Metastatic disease: the key unmet need in oncology, 5 per Mille no. 22737 to CB, MF, CD, MR and MPP; the ERA-NET EuroNanoMed III (a collaborative european grant financed by the Italian Ministry of Health, Italy) project PANIPAC (JTC2018/041) to MPP; the Fondazione Valsecchi to SC.
Collapse
Affiliation(s)
- Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Clemente
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Pini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Grazia Ceraolo
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Balestrieri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Belfiori
- Pancreatic Surgery Unit and Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Crippa
- Pancreatic Surgery Unit and Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianpaolo Balzano
- Pancreatic Surgery Unit and Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit and Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Michele Reni
- Vita-Salute San Raffaele University, Milan, Italy; Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|