1
|
Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, Ma W, Xu W, Chen X, Chen J, Liang C. CXCR4 regulates macrophage M1 polarization by altering glycolysis to promote prostate fibrosis. Cell Commun Signal 2024; 22:456. [PMID: 39327570 PMCID: PMC11426013 DOI: 10.1186/s12964-024-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chen Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenming Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenlong Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xianguo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
3
|
Yue SY, Li WY, Xu S, Bai XX, Xu WL, Wang X, Ding HK, Chen J, Du HX, Xu LF, Niu D, Liang CZ. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. Front Microbiol 2024; 15:1445304. [PMID: 39323879 PMCID: PMC11422081 DOI: 10.3389/fmicb.2024.1445304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei-Yi Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Xin Bai
- Department of Infectious Disease, The Second People’s Hospital of Fuyang City, Fuyang, China
| | - Wen-Long Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Yue SY, Niu D, Ma WM, Guan Y, Liu QS, Wang XB, Xiao YZ, Meng J, Ding K, Zhang L, Du HX, Liang CZ. The CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in experimental autoimmune prostatitis through the PI3K/AKT pathway. Andrology 2024; 12:1408-1418. [PMID: 38095276 DOI: 10.1111/andr.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Ming Ma
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Shi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Bin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yun-Zheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Liu X, Chen J, Yue S, Zhang C, Song J, Liang H, Liang C, Chen X. NLRP3-mediated IL-1β in regulating the imbalance between Th17 and Treg in experimental autoimmune prostatitis. Sci Rep 2024; 14:18829. [PMID: 39138267 PMCID: PMC11322183 DOI: 10.1038/s41598-024-69512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a urinary disorder that affects youthful to middle-aged men most frequently. It has been revealed that Th17/Treg imbalance is a crucial factor in the pathophysiological mechanisms behind this disease. However, this imbalance's mechanisms are unknown. In the experimental autoimmune prostatitis (EAP) mouse model, the NLRP3 inflammasome was turned on, IL-1β levels went up. Moreover, there exists a discernible positive association between the upsurge in IL-1β and the perturbation of Th17/Treg equilibrium. Additionally, we have revealed that IL-1β plays a vital role in promoting the differentiation of Naïve CD4+ T cells into the Th17 cells and enhances the conversion of Treg cells into Th17 cells. Further studies revealed that IL-1β promotes STAT3 phosphorylation, which is what causes Treg cells to become Th17 cells. All data strongly suggest that the NLRP3 inflammatory influence Th17 cell development and the conversion of Treg cells into Th17 cells through IL-1β, disrupting the Th17/Treg balance and exacerbating EAP inflammation. In this article, we provide new theories for the pathogenesis of CP/CPPS and propose new prevention and therapy methods.
Collapse
Affiliation(s)
- Xianhong Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hu Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Urology, Dongcheng Branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, Anhui, People's Republic of China.
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Urology, Dongcheng Branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
7
|
Ye Y, Zhong W, Luo R, Wen H, Ma Z, Qi S, Han X, Nie W, Chang D, Xu R, Ye N, Gao F, Zhang P. Thermosensitive hydrogel with emodin-loaded triple-targeted nanoparticles for a rectal drug delivery system in the treatment of chronic non-bacterial prostatitis. J Nanobiotechnology 2024; 22:33. [PMID: 38238760 PMCID: PMC10795337 DOI: 10.1186/s12951-023-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The complex etiology and pathogenesis underlying Chronic Non-Bacterial Prostatitis (CNP), coupled with the existence of a Blood Prostate Barrier (BPB), contribute to a lack of specificity and poor penetration of most drugs. Emodin (EMO), a potential natural compound for CNP treatment, exhibits commendable anti-inflammatory, anti-oxidant, and anti-fibrosis properties but suffers from the same problems as other drugs. METHODS By exploiting the recognition properties of lactoferrin (LF) receptors that target intestinal epithelial cells (NCM-460) and prostate epithelial cells (RWPE-1), a pathway is established for the transrectal absorption of EMO to effectively reach the prostate. Additionally, hyaluronic acid (HA) is employed, recognizing CD44 receptors which target macrophages within the inflamed prostate. This interaction facilitates the intraprostatic delivery of EMO, leading to its pronounced anti-inflammatory effects. A thermosensitive hydrogel (CS-Gel) prepared from chitosan (CS) and β-glycerophosphate disodium salt (β-GP) was used for rectal drug delivery with strong adhesion to achieve effective drug retention and sustained slow release. Thus, we developed a triple-targeted nanoparticle (NPs)/thermosensitive hydrogel (Gel) rectal drug delivery system. In this process, LF, with its positive charge, was utilized to load EMO through dialysis, producing LF@EMO-NPs. Subsequently, HA was employed to encapsulate EMO-loaded LF nanoparticles via electrostatic adsorption, yielding HA/LF@EMO-NPs. Finally, HA/LF@EMO-NPs lyophilized powder was added to CS-Gel (HA/LF@EMO-NPs Gel). RESULTS Cellular assays indicated that NCM-460 and RWPE-1 cells showed high uptake of both LF@EMO-NPs and HA/LF@EMO-NPs, while Raw 264.7 cells exhibited substantial uptake of HA/LF@EMO-NPs. For LPS-induced Raw 264.7 cells, HA/LF@EMO-NPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways. Tissue imaging corroborated the capacity of HA/LF-modified formulations to breach the BPB, accumulating within the gland's lumen. Animal experiments showed that rectal administration of HA/LF@EMO-NPs Gel significantly reduced inflammatory cytokine expression, oxidative stress levels and fibrosis in the CNP rats, in addition to exerting anti-inflammatory effects by inhibiting the NF-κB signaling pathway without obvious toxicity. CONCLUSION This triple-targeted NPs/Gel rectal delivery system with slow-release anti-inflammatory, anti-oxidant, and anti-fibrosis properties shows great potential for the effective treatment of CNP.
Collapse
Affiliation(s)
- Yan Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hongzhi Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ziyang Ma
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Peihai Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
8
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wu ZS, Wang HJ, Lee WC, Luo HL, Lin TK, Chuang YC. Low-Energy Shock Wave Suppresses Prostatic Pain and Inflammation by Modulating Mitochondrial Dynamics Regulators on a Carrageenan-Induced Prostatitis Model in Rats. Int J Mol Sci 2023; 24:ijms24043898. [PMID: 36835316 PMCID: PMC9968097 DOI: 10.3390/ijms24043898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
A low-energy shock wave (LESW) has therapeutic effects on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its mechanism of action remains unclear. We explored the effects of LESW on the prostate and mitochondrial dynamics regulators in a rat model of carrageenan-induced prostatitis. The imbalance of mitochondrial dynamics regulators may affect the inflammatory process and molecules and contribute to CP/CPPS. Male Sprague-Dawley rats received intraprostatic 3% or 5% carrageenan injections. The 5% carrageenan group also received LESW treatment at 24 h, 7 days, and 8 days. Pain behavior was evaluated at baseline, 1 week, and 2 weeks after a saline or carrageenan injection. The bladder and the prostate were harvested for immunohistochemistry and quantitative reverse-transcription polymerase chain reaction analysis. Intraprostatic carrageenan injection induced inflammatory reaction in the prostate and the bladder, decreased the pain threshold, and resulted in the upregulation of Drp-1, MFN-2, NLRP3 (mitochondrial integrity markers), substance P, and CGRP-RCP, whose effects were maintained for 1-2 weeks. LESW treatment suppressed carrageenan-induced prostatic pain, inflammatory reaction, mitochondrial integrity markers, and expression of sensory molecules. These findings support a link between the anti-neuroinflammatory effects of LESW in CP/CPPS and the reversal of cellular perturbations caused by imbalances in mitochondrial dynamics in the prostate.
Collapse
Affiliation(s)
- Zong-Sheng Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Hou Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 833, Taiwan
- Center for Mitochondrial Research and Medicine, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8094)
| |
Collapse
|
10
|
Weng S, Zhang J, Ma H, Zhou J, Jia L, Wan Y, Cui P, Ruan Q, Shao L, Wu J, Wang H, Zhang W, Xu Y. B21 DNA vaccine expressing ag85b, rv2029c, and rv1738 confers a robust therapeutic effect against latent Mycobacterium tuberculosis infection. Front Immunol 2022; 13:1025931. [PMID: 36569899 PMCID: PMC9768437 DOI: 10.3389/fimmu.2022.1025931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Latent tuberculosis infection (LTBI) treatment is known to accelerate the decline in TB incidence, especially in high-risk populations. Mycobacterium tuberculosis (M. tb) expression profiles differ at different growth periods, and vaccines protective and therapeutic effects may increase when they include antigenic compositions from different periods. To develop a post-exposure vaccine that targets LTBI, we constructed four therapeutic DNA vaccines (A39, B37, B31, and B21) using different combinations of antigens from the proliferation phase (Ag85A, Ag85B), PE/PPE family (Rv3425), and latent phase (Rv2029c, Rv1813c, Rv1738). We compared the immunogenicity of the four DNA vaccines in C57BL/6j mice. The B21 vaccine stimulated the strongest cellular immune responses, namely Th1/Th17 and CD8+ cytotoxic T lymphocyte responses. It also induced the generation of strengthened effector memory and central memory T cells. In latently infected mice, the B21 vaccine significantly reduced bacterial loads in the spleens and lungs and decreased lung pathology. In conclusion, the B21 DNA vaccine can enhance T cell responses and control the reactivation of LTBI.
Collapse
Affiliation(s)
- Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmin Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| |
Collapse
|