1
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Kisakov DN, Belyakov IM, Kisakova LA, Yakovlev VA, Tigeeva EV, Karpenko LI. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines 2024; 23:102-123. [PMID: 38063059 DOI: 10.1080/14760584.2023.2292772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity. However, due to the different configurations of devices used for EP, EP protocols optimization is required not only to enhance immunogenicity, but also to ensure greater safety and tolerability of the EP procedure. AREA COVERED An data analysis for recent years on the DNA vaccines delivery against viral and parasitic infections using EP was carried out. The study of various EP physical characteristics, such as frequency, pulse duration, pulse interval, should be considered along with the immunogenic construct design and the site of delivery of the vaccine, through the study of the immunogenic and protective characteristics of the latter. EXPERT OPINION Future research should focus on regulating the humoral and cellular response required for protection against infectious agents by modifying the EP protocol. Significant efforts will be directed to establishing the possibility of redirecting the immune response toward the Th1 or Th2 response by changing the EP physical parameters. It will allow for an individual selective approach during EP, depending on the pathogen type of an infectious disease.
Collapse
Affiliation(s)
- Denis N Kisakov
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Igor M Belyakov
- Department of medico-biological disciplines, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - Lubov A Kisakova
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Vladimir A Yakovlev
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Elena V Tigeeva
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Larisa I Karpenko
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| |
Collapse
|
3
|
de Lima MR, Leandro ACCS, de Souza AL, Barradas MM, Roma EH, Fernandes ATG, Galdino-Silva G, Carvalho JKMR, Marchevsky RS, Coelho JMCO, Gonçalves EDC, VandeBerg JL, Silva CL, Bonecini-Almeida MDG. Safety and Immunogenicity of an In Vivo Muscle Electroporation Delivery System for DNA- hsp65 Tuberculosis Vaccine in Cynomolgus Monkeys. Vaccines (Basel) 2023; 11:1863. [PMID: 38140266 PMCID: PMC10747856 DOI: 10.3390/vaccines11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Cristina C. S. Leandro
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Andreia Lamoglia de Souza
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Marcio Mantuano Barradas
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Teresa Gomes Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Gabrielle Galdino-Silva
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Joyce Katiuccia M. Ramos Carvalho
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Renato Sergio Marchevsky
- Laboratory of Neurovirulence, Instituto de Biotecnologia em Imunobiológicos, Biomanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Janice M. C. Oliveira Coelho
- Laboratory of Pathology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | | | - John L. VandeBerg
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Celio Lopes Silva
- Farmacore Biotecnologia Ltda, Ribeirão Preto 14056-680, SP, Brazil; (E.D.C.G.); (C.L.S.)
- Laboratory for Research and Development of Immunobiologicals, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| |
Collapse
|
4
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
5
|
Liang Y, Li X, Yang Y, Xiao L, Liang Y, Mi J, Xue Y, Gong W, Wang L, Wang J, Zhang J, Shi Y, Peng B, Chen X, Zhao W, Wu X. Preventive effects of Mycobacterium tuberculosis DNA vaccines on the mouse model with latent tuberculosis infection. Front Immunol 2023; 14:1110843. [PMID: 36860878 PMCID: PMC9968874 DOI: 10.3389/fimmu.2023.1110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Background About a quarter of the world's population with latent tuberculosis infection (LTBI) are the main source of active tuberculosis. Bacillus Calmette Guerin (BCG) cannot effectively control LTBI individuals from developing diseases. Latency-related antigens can induce T lymphocytes of LTBI individuals to produce higher IFN-γ levels than tuberculosis patients and normal subjects. Herein, we firstly compared the effects of M. tuberculosis (MTB) ag85ab and 7 latent DNA vaccines on clearing latent MTB and preventing its activation in the mouse LTBI model. Methods A mouse LTBI model was established, and then immunized respectively with PBS, pVAX1 vector, Vaccae vaccine, ag85ab DNA and 7 kinds of latent DNAs (including rv1733c, rv2660c, rv1813c, rv2029c, rv2628, rv2659c and rv3407) for three times. The mice with LTBI were injected with hydroprednisone to activate the latent MTB. Then, the mice were sacrificed for the bacterial count, histopathological examination, and immunological evaluation. Results Using chemotherapy made the MTB latent in the infected mice, and then using hormone treatment reactivated the latent MTB, indicating that the mouse LTBI model was successfully established. After the mouse LTBI model was immunized with the vaccines, the lung colony-forming units (CFUs) and lesion degree of mice in all vaccines group were significantly decreased than those in the PBS group and vector group (P<0.0001, P<0.05). These vaccines could induce antigen-specific cellular immune responses. The number of IFN-γ effector T cells spots secreted by spleen lymphocytes in the ag85ab DNA group was significantly increased than those in the control groups (P<0.05). In the splenocyte culture supernatant, IFN-γ and IL-2 levels in the ag85ab, rv2029c, and rv2659c DNA groups significantly increased (P<0.05), and IL-17A levels in ag85ab and rv2659c DNA groups also significantly increased (P<0.05). Compared with the PBS and vector groups, the proportion of CD4+CD25+FOXP3+ regulatory T cells in spleen lymphocytes of ag85ab, rv2660c, rv2029c, and rv3407 DNA groups were significantly reduced (P<0.05). Conclusions MTB ag85ab and 7 kinds of latent DNA vaccines showed immune preventive efficacies on a mouse model of LTBI, especially the rv2659c, and rv1733c DNA. Our findings will provide candidates for the development of new multi-stage vaccines against TB.
Collapse
Affiliation(s)
- Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoping Li
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,Department of Respiration, Hengdong People’s Hospital, Hengyang, China
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yumei Liang
- Department of Pathology, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yingchang Shi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bizhen Peng
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Chen
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Weiguo Zhao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| |
Collapse
|
6
|
Weng S, Zhang J, Ma H, Zhou J, Jia L, Wan Y, Cui P, Ruan Q, Shao L, Wu J, Wang H, Zhang W, Xu Y. B21 DNA vaccine expressing ag85b, rv2029c, and rv1738 confers a robust therapeutic effect against latent Mycobacterium tuberculosis infection. Front Immunol 2022; 13:1025931. [PMID: 36569899 PMCID: PMC9768437 DOI: 10.3389/fimmu.2022.1025931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Latent tuberculosis infection (LTBI) treatment is known to accelerate the decline in TB incidence, especially in high-risk populations. Mycobacterium tuberculosis (M. tb) expression profiles differ at different growth periods, and vaccines protective and therapeutic effects may increase when they include antigenic compositions from different periods. To develop a post-exposure vaccine that targets LTBI, we constructed four therapeutic DNA vaccines (A39, B37, B31, and B21) using different combinations of antigens from the proliferation phase (Ag85A, Ag85B), PE/PPE family (Rv3425), and latent phase (Rv2029c, Rv1813c, Rv1738). We compared the immunogenicity of the four DNA vaccines in C57BL/6j mice. The B21 vaccine stimulated the strongest cellular immune responses, namely Th1/Th17 and CD8+ cytotoxic T lymphocyte responses. It also induced the generation of strengthened effector memory and central memory T cells. In latently infected mice, the B21 vaccine significantly reduced bacterial loads in the spleens and lungs and decreased lung pathology. In conclusion, the B21 DNA vaccine can enhance T cell responses and control the reactivation of LTBI.
Collapse
Affiliation(s)
- Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jinyi Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Huixia Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiu Jia
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanmin Wan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China,*Correspondence: Ying Xu, ; Wenhong Zhang,
| |
Collapse
|