1
|
Schamel WW, Zintchenko M, Nguyen T, Fehse B, Briquez PS, Minguet S. The potential of γδ CAR and TRuC T cells: An unearthed treasure. Eur J Immunol 2024; 54:e2451074. [PMID: 39192467 DOI: 10.1002/eji.202451074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Recent years have witnessed the success of αβ T cells engineered to express chimeric antigen receptors (CARs) in treating haematological cancers. CARs combine the tumour antigen binding capability of antibodies with the signalling functions of the T-cell receptor (TCR) ζ chain and co-stimulatory receptors. Despite the success, αβ CAR T cells face limitations. Possible solutions would be the use of γδ T cells and new chimeric receptors, such as TCR fusion constructs (TRuCs). Notably, γδ CAR T cells are gaining traction in pre-clinical and clinical studies, demonstrating a promising safety profile in several pilot studies. This review delves into the current understanding of γδ CAR and TCR fusion construct T cells, exploring the opportunities and challenges they present for cancer treatment.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| | - Marina Zintchenko
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Trang Nguyen
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, and Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Centre for Translational Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signaling Research Centres BIOSS and CIBSS; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Clinics Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
3
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
4
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Wang CQ, Lim PY, Tan AHM. Gamma/delta T cells as cellular vehicles for anti-tumor immunity. Front Immunol 2024; 14:1282758. [PMID: 38274800 PMCID: PMC10808317 DOI: 10.3389/fimmu.2023.1282758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Adoptive cellular immunotherapy as a new paradigm to treat cancers is exemplified by the FDA approval of six chimeric antigen receptor-T cell therapies targeting hematological malignancies in recent years. Conventional αβ T cells applied in these therapies have proven efficacy but are confined almost exclusively to autologous use. When infused into patients with mismatched human leukocyte antigen, αβ T cells recognize tissues of such patients as foreign and elicit devastating graft-versus-host disease. Therefore, one way to overcome this challenge is to use naturally allogeneic immune cell types, such as γδ T cells. γδ T cells occupy the interface between innate and adaptive immunity and possess the capacity to detect a wide variety of ligands on transformed host cells. In this article, we review the fundamental biology of γδ T cells, including their subtypes, expression of ligands, contrasting roles in and association with cancer prognosis or survival, as well as discuss the gaps in knowledge pertaining to this cell type which we currently endeavor to elucidate. In addition, we propose how to harness the unique properties of γδ T cells for cellular immunotherapy based on lessons gleaned from past clinical trials and provide an update on ongoing trials involving these cells. Lastly, we elaborate strategies that have been tested or can be explored to improve the anti-tumor activity and durability of γδ T cells in vivo.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yu Lim
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andy Hee-Meng Tan
- Immune Cell Manufacturing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology (SIT), Singapore, Singapore
| |
Collapse
|
6
|
Zhao Y, Dong P, He W, Zhang J, Chen H. γδ T cells: Major advances in basic and clinical research in tumor immunotherapy. Chin Med J (Engl) 2024; 137:21-33. [PMID: 37592858 PMCID: PMC10766231 DOI: 10.1097/cm9.0000000000002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 08/19/2023] Open
Abstract
ABSTRACT γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
Collapse
Affiliation(s)
- Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
7
|
Yan W, Dunmall LSC, Lemoine NR, Wang Y, Wang Y, Wang P. The capability of heterogeneous γδ T cells in cancer treatment. Front Immunol 2023; 14:1285801. [PMID: 38077392 PMCID: PMC10704246 DOI: 10.3389/fimmu.2023.1285801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αβ T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.
Collapse
Affiliation(s)
- Wenyi Yan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yafeng Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Bernal-Alferes B, Gómez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, García-Latorre E, Domínguez-López ML, Romero-López JP. The role of γδ T cells in the immunopathogenesis of inflammatory diseases: from basic biology to therapeutic targeting. J Leukoc Biol 2023; 114:557-570. [PMID: 37040589 DOI: 10.1093/jleuko/qiad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
The γδ T cells are lymphocytes with an innate-like phenotype that can distribute to different tissues to reside and participate in homeostatic functions such as pathogen defense, tissue modeling, and response to stress. These cells originate during fetal development and migrate to the tissues in a TCR chain-dependent manner. Their unique manner to respond to danger signals facilitates the initiation of cytokine-mediated diseases such as spondyloarthritis and psoriasis, which are immune-mediated diseases with a very strong link with mucosal disturbances, either in the skin or the gut. In spondyloarthritis, γδ T cells are one of the main sources of IL-17 and, therefore, the main drivers of inflammation and probably new bone formation. Remarkably, this population can be the bridge between gut and joint inflammation.
Collapse
Affiliation(s)
- Brian Bernal-Alferes
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rafael Gómez-Mosqueira
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Graciela Teresa Ortega-Tapia
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis No. 148 Col. Doctores C.P. 06720, Alcaldía Cuauhtémoc Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás C.P. 11340 Alcaldía Miguel Hidalgo, Ciudad de México, México
| | - José Pablo Romero-López
- Laboratorio de Patogénesis Molecular, Edificio A4, Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Número 1, Colonia Los Reyes Ixtacala, C.P. 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
9
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
10
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
11
|
Ishihara M, Miwa H, Fujiwara H, Akahori Y, Kato T, Tanaka Y, Tawara I, Shiku H. αβ-T cell receptor transduction gives superior mitochondrial function to γδ-T cells with promising persistence. iScience 2023; 26:107802. [PMID: 37720098 PMCID: PMC10502403 DOI: 10.1016/j.isci.2023.107802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Adoptive cell therapy using allogeneic γδ-T cells is a promising option for off-the-shelf T cell products with a low risk of graft-versus-host disease (GVHD). Long-term persistence may boost the clinical development of γδ-T cell products. In this study, we found that genetically modified Vγ9+Vδ2+ T cells expressing a tumor antigen-specific αβ-TCR and CD8 coreceptor (GMC) showed target-specific killing and excellent persistence. To determine the mechanisms underlying these promising effects, we investigated metabolic characteristics. Cytokine secretion by γδ-TCR-stimulated nongene-modified γδ-T cells (NGMCs) and αβ-TCR-stimulated GMCs was equally suppressed by a glycolysis inhibitor, although the cytokine secretion of αβ-TCR-stimulated GMCs was more strongly inhibited by ATP synthase inhibitors than that of γδ-TCR-stimulated NGMCs. Metabolomic and transcriptomic analyses, flow cytometry analysis using mitochondria-labeling dyes and extracellular flux analysis consistently suggest that αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function. In conclusion, αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function with promising persistence.
Collapse
Affiliation(s)
- Mikiya Ishihara
- Department of Medical Oncology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroshi Miwa
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Hiroshi Fujiwara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
12
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
13
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
14
|
Amajala KC, Gudivada IP, Malla RR. Gamma Delta T Cells: Role in Immunotherapy of Hepatocellular Carcinoma. Crit Rev Oncog 2023; 28:41-50. [PMID: 38050980 DOI: 10.1615/critrevoncog.2023049893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The most typical type of liver cancer or hepatocellular carcinoma (HCC) develops from hepatocyte loss. Non-alcoholic fatty liver disease (NAFLD), viral hepatitis C and cirrhosis are the leading causes of HCC. With the Hepatitis B vaccine and medicines, there are several treatments for HCC, including liver resection, ablation, transplantation, immunotherapy, gene therapy, radiation embolization, and targeted therapy. Currently, a wide range of studies are carried out on gene therapy to identify biomarkers and pathways, which help us identify the exact stage of the disorder and reduce its effects. γδT cells have recently received much interest as a potential cancer treatment method in adaptive immunotherapy. γδT cells can quickly form connections between receptor and ligand activation. They can clonally expand and are a significant source of cytokines and chemokines. The present review provides a comprehensive understanding on the function of γδT cells in immunotherapies and how they are used to treat HCC.
Collapse
Affiliation(s)
- Krishna Chaitanya Amajala
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Indu Priya Gudivada
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
15
|
Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, Shi Y, Xu F. The association of γδT lymphocytes with cystic leukomalacia in premature infants. Front Neurol 2022; 13:1043142. [PMID: 36530609 PMCID: PMC9755680 DOI: 10.3389/fneur.2022.1043142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
Background Periventricular leukomalacia (PVL) is an essential cause of cerebral palsy in preterm infants, and cystic PVL (cPVL) is the most severe form of the disease. The pathogenesis of cPVL is complex, and immune imbalances and inflammatory responses may play an essential role in it. Objective This study aimed to investigate the correlation between peripheral blood lymphocyte subsets, especially γδT cells with the pathogenesis of cPVL in preterm infants. Methods Peripheral blood from preterm infants with GA < 32 weeks and BW < 1,500 g was used in this study and was collected at 34 weeks corrected gestational age and within 24 h after the diagnosis with cranial MRI or cranial ultrasound. The infants were divided into cPVL groups and control groups. Flow cytometry was used to detect peripheral blood γδT, CD3+, CD4+, CD8+, and the proportion of total lymphocytes. Multiplex cell assays were used to detect the concentration of extracellular serum cytokines IL-6, IL-2, IL-8, IL-17A, IL-10, IL-1RA, eotaxin (CCL11), MCP-1 (CCL2), CXCL1, G-CSF, and IFNγ. A follow-up visit was carried out when the patient was 3 years old. Results After correcting for confounding factors, the proportion of peripheral blood γδT in the cPVL group was significantly lower than that in the control group (β: 0.216; 95% CI: 0.058-0.800, P < 0.022). Peripheral blood γδT (AUC: 0.722, P=0.006) and multivariate binary regression model (AUC: 0.865, P < 0.000) have good diagnostic values for cPVL. Peripheral blood γδT has some predictive power for neurodevelopmental outcomes in preterm infants (AUC: 0.743, P = 0.002). Conclusion It seems that peripheral blood γδT cells are inversely correlated with cPVL, which is not only a risk factor for cPVL disease but also neurodevelopmental outcomes in preterm infants. However, the causality of cPVL and various lymphocytes is unclear and needs further study.
Collapse
Affiliation(s)
- Mengjie Yuan
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xinyun Jin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Fanyue Qin
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|