1
|
Kenyon M, Liptrott SJ, Kisch A, Mooyaart J, Piepenbroek B, Hutt D, Salcedo I, Ruggeri A, Chabannon C, Ellard R, Murray J. Nurses' reported training needs for advanced cell therapies: a survey on behalf of the Nurses Group of the EBMT. Clin Hematol Int 2024; 6:104-113. [PMID: 39564144 PMCID: PMC11574697 DOI: 10.46989/001c.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/19/2024] [Indexed: 11/21/2024] Open
Abstract
Background Advanced Therapy Medicinal Products (ATMPs) for human use have advanced globally with the rapid adoption of Chimeric Antigen Receptor T-cell (CAR-T) therapies in haemato-oncology. CAR-T cell therapy and ATMPs have unique, significant acute and chronic toxicities, and appropriate patient care is crucial. Significant challenges, including the need for nurse education and training, accompany optimal patient success and benefits. Objectives This study aimed to describe nurses' training needs in relation to ATMP management and patient care. Methods A cross-sectional online survey was performed by the European Society for Blood and Marrow Transplantation, based on a previously tested questionnaire developed in the UK. Findings 109 complete responses from 86 different centers from 24 countries were returned (1207 distributed). Over 1/3 reported experience delivering licensed ATMPs (CAR-T). High-priority training areas included a general introduction to ATMPs, toxicity management, product-specific information, and regulatory frameworks for ATMPs. A clear need for ATMP-specific training exists and is regarded as important. Training prior to implementation is key and should be supported by ongoing competency maintenance. Counseling, patient support, and long-term follow-up are identified for future training and opportunities for nurse experience sharing in this rapidly evolving field.
Collapse
Affiliation(s)
- Michelle Kenyon
- Department of Haematological Medicine, 4th Floor Hambledon Wing West, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom
| | - Sarah Jayne Liptrott
- Nursing Development and Research Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), via Gallino 12, 6500, Bellinzona, Switzerland
- Department of Nursing, Regional Hospital of Bellinzona e Valli, Ente Ospedaliero Cantonale (EOC), via Gallino 12, 6500, Bellinzona, Switzerland
| | - Annika Kisch
- Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden
- Institute of Health Sciences, Lund University, Lund, Sweden
| | - Jarl Mooyaart
- EBMT Leiden Statistical Unit, Rijnsburgerweg 10, 2333 AA, Leiden, The Netherlands
| | - Brian Piepenbroek
- EBMT Leiden Study Unit, Rijnsburgerweg 10, 2333 AA, Leiden, The Netherlands
| | - Daphna Hutt
- Department of Paediatric Hematology-Oncology and BMT, Edmond and lily Safra Children Hospital, Sheba Medical center, Ramat-Gan 5265601 Israel
| | - Isabel Salcedo
- Hospital Universitario Puerta de Hierro Majadahonda, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Segovia Arana. Calle Joaquín Rodrigo 2, 28222 Majadahonda, Spain
| | - Annalisa Ruggeri
- Dept of Hematology, IRCCS San Raffaele Scientific Institute, 20135 Milano, Italy
| | - Cristian Chabannon
- Centre de Thérapie Cellulaire. Institut Paoli-Calmettes Comprehensive Cancer Centre & module Biothérapies du Centre d'Investigations Cliniques de Marseille, Inserm CBT-1409, Aix-Marseille Université, AP-HM, Institut Paoli-Calmettes. Marseille, France
| | - Rose Ellard
- The Royal Marsden NHS Foundation Trust, London, UK
| | - John Murray
- Haematology and Transplant Unit The Christie NHS FT, Manchester, United Kingdom
| |
Collapse
|
2
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
3
|
Shi S, Ou X, Liu C, Wen H, Jiang K. Immunoproteasome acted as immunotherapy 'coffee companion' in advanced carcinoma therapy. Front Immunol 2024; 15:1464267. [PMID: 39281672 PMCID: PMC11392738 DOI: 10.3389/fimmu.2024.1464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Immunoproteasome is a specialized form of proteasome which plays a crucial role in antigen processing and presentation, and enhances immune responses against malignant cells. This review explores the role of immunoproteasome in the anti-tumor immune responses, including immune surveillance and modulation of the tumor microenvironment, as well as its potential as a target for cancer immunotherapy. Furthermore, we have also discussed the therapeutic potential of immunoproteasome inhibitors, strategies to enhance antigen presentation and combination therapies. The ongoing trials and case studies in urology, melanoma, lung, colorectal, and breast cancers have also been summarized. Finally, the challenges facing clinical translation of immunoproteasome-targeted therapies, such as toxicity and resistance mechanisms, and the future research directions have been addressed. This review underscores the significance of targeting the immunoproteasome in combination with other immunotherapies for solid tumors and its potential broader applications in other diseases.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wen
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Dougé A, El Ghazzi N, Lemal R, Rouzaire P. Adoptive T Cell Therapy in Solid Tumors: State-of-the Art, Current Challenges, and Upcoming Improvements. Mol Cancer Ther 2024; 23:272-284. [PMID: 37903371 DOI: 10.1158/1535-7163.mct-23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
In solid tumors, three main complementary approaches of adoptive T-cell therapies were successively developed: tumor-infiltrating lymphocytes, chimeric antigen receptor engineered T cells, and high-affinity T-cell receptor engineered T cells. In this review, we summarized rational and main results of these three adoptive T-cell therapies in solid tumors field and gave an overview of encouraging data and their limits. Then, we listed the major remaining challenges (including tumor antigen loss, on-target/off-tumor effect, tumor access difficulties and general/local immunosubversion) and their lines of research. Finally, we gave insight into the ongoing trials in solid tumor.
Collapse
Affiliation(s)
- Aurore Dougé
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
| | - Nathan El Ghazzi
- Medical Oncology Department, University Hospital, Clermont-Ferrand, France
| | - Richard Lemal
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| | - Paul Rouzaire
- EA(UR)7453 CHELTER - Clermont Auvergne University, Clermont-Ferrand, France
- Histocompatibility and Immunogenetic Department, University Hospital, Clermont-Ferrand, France
| |
Collapse
|
5
|
Xiao Y, Wu M, Xue C, Wang Y. Recent Advances in the Development of Membrane-derived Vesicles for Cancer Immunotherapy. Curr Drug Deliv 2024; 21:403-420. [PMID: 37143265 DOI: 10.2174/1567201820666230504120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The surface proteins on cell membranes enable the cells to have different properties, such as high biocompatibility, surface modifiability, and homologous targeting ability. Cell-membrane-derived vesicles have features identical to those of their parental cells, which makes them one of the most promising materials for drug delivery. Recently, as a result of the impressive effects of immunotherapy in cancer treatment, an increasing number of researchers have used cell-membrane-derived vesicles to enhance immune responses. To be more specific, the membrane vesicles derived from immune cells, tumor cells, bacteria, or engineered cells have the antigen presentation capacity and can trigger strong anti-tumor effects of the immune system. In this review, we first indicated a brief description of the vesicles and then introduced the detection technology and drug-loading methods for them. Secondly, we concluded the characteristics and applications of vesicles derived from different sources in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuai Xiao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape. Curr Issues Mol Biol 2023; 45:9181-9214. [PMID: 37998753 PMCID: PMC10670245 DOI: 10.3390/cimb45110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Department of Health Sciences, KES College, 1055 Nicosia, Cyprus
- Faculty of Pharmacy, Department of Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Sofia K. Georgiou-Siafis
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Charikleia Ntenti
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- 1st Laboratory of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Ioannis S. Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Lefkothea C. Papadopoulou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
| |
Collapse
|
7
|
Sun S, Ding Z, Gao L, Hammock BD, Huang X, Xu ZP, Wang X, Cheng Q, Mo F, Shi W, Xie S, Liu A, Li H, Yang X, Lu X. A dendritic/tumor fusion cell vaccine enhances efficacy of nanobody-based CAR-T cells against solid tumor. Theranostics 2023; 13:5099-5113. [PMID: 37771772 PMCID: PMC10526666 DOI: 10.7150/thno.84946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Chimeric antigen receptor (CAR) T-cell therapy is practical in treating cancers of hematopoietic origin, but of that in solid tumors compromises efficacy for the loss of the antigen recognized by the CAR. However, dendritic cell (DC)/tumor fusion vaccines present a spectrum of known or unknown tumor antigens to stimulate T cell expansion and enhanced T cell response. Developing a new strategy of enhanced nanobody-based CAR-T (Nb-CAR-T) cells antitumor activity by DC/tumor fusion vaccines stimulation would provide guidance for more effective CAR-T cell therapies. Methods: Considering the therapeutic potential of nanobody (Nb), we first screened EGFRvIII Nb, then constructed and verified the function of EGFRvIII Nb-CAR-T cells in vitro and in vivo. We further combined DC/tumor fusion vaccines to boost EGFRvIII Nb-CAR-T cells antitumor effect, which was evaluated in vitro Nb-CAR-T cell function and in the tumor-bearing xenograft mouse models. Results: We had for the first time successfully selected EGFRvIII Nb for the generation of the novel EGFRvIII Nb-CAR-T cells. Importantly, our results suggested that DC/tumor fusion vaccines stimulate Nb-CAR-T cells response not only in improving T cell proliferation, T cell activation, cytokine secretion and tumor-specific cytotoxicity in vitro, but also significantly reducing tumor burden, prolonging survival and improving Nb-CAR-T cells infiltration. Conclusions: We have innovatively shown that DC/tumor fusion vaccines significantly enhance the efficacy of Nb-CAR-T cells against solid tumors. This new strategy has provided a promising therapeutic platform for promoting the clinical treatment of CAR-T cells therapy.
Collapse
Affiliation(s)
- Shuyang Sun
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Ziqiang Ding
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Li Gao
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Bruce D. Hammock
- UCD Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - Xianing Huang
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qihong Cheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fengzhen Mo
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Shenxia Xie
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Aiqun Liu
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Haixia Li
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaomei Yang
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoling Lu
- College of Stomatology/ Hospital of Stomatology/ School of Basic Medical Sciences/ Guangxi Key Laboratory of Nanobody Research/ Guangxi Nanobody Engineering Research Center/ Laboratory Animal Center/ Pharmaceutical College/ Affiliated Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
8
|
Joaquina S, Forcados C, Caulier B, Inderberg EM, Wälchli S. Determination of CAR T cell metabolism in an optimized protocol. Front Bioeng Biotechnol 2023; 11:1207576. [PMID: 37409169 PMCID: PMC10318902 DOI: 10.3389/fbioe.2023.1207576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Adoptive transfer of T cells modified to express chimeric antigenic receptors (CAR) has emerged as a solution to cure refractory malignancies. However, although CAR T cell treatment of haematological cancers has now shown impressive improvement in outcome, solid tumours have been more challenging to control. The latter type is protected by a strong tumour microenvironment (TME) which might impact cellular therapeutic treatments. Indeed, the milieu around the tumour can become particularly inhibitory to T cells by directly affecting their metabolism. Consequently, the therapeutic cells become physically impeded before being able to attack the tumour. It is therefore extremely important to understand the mechanism behind this metabolic break in order to develop TME-resistant CAR T cells. Historically, the measurement of cellular metabolism has been performed at a low throughput which only permitted a limited number of measurements. However, this has been changed by the introduction of real-time technologies which have lately become more popular to study CAR T cell quality. Unfortunately, the published protocols lack uniformity and their interpretation become confusing. We herein tested the essential parameters to perform a metabolic study on CAR T cells and propose a check list of factors that should be set in order to draw sound conclusion.
Collapse
Affiliation(s)
- Sandy Joaquina
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Christopher Forcados
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Benjamin Caulier
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Das S, Valton J, Duchateau P, Poirot L. Stromal depletion by TALEN-edited universal hypoimmunogenic FAP-CAR T cells enables infiltration and anti-tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy. Front Immunol 2023; 14:1172681. [PMID: 37251405 PMCID: PMC10213512 DOI: 10.3389/fimmu.2023.1172681] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Adoptive cell therapy based on chimeric antigen receptor (CAR)-engineered T-cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has so far been restricted to only a few malignancies, with solid tumors proving to be especially recalcitrant to efficient therapy. Poor intra-tumor infiltration by T cells and T cell dysfunction due to a desmoplastic, immunosuppressive microenvironment are key barriers for CAR T-cell success against solid tumors. Cancer-associated fibroblasts (CAFs) are critical components of the tumor stroma, evolving specifically within the tumor microenvironment (TME) in response to tumor cell cues. The CAF secretome is a significant contributor to the extracellular matrix and a plethora of cytokines and growth factors that induce immune suppression. Together they form a physical and chemical barrier which induces a T cell-excluding 'cold' TME. CAF depletion in stroma rich solid tumors can thus provide an opportunity to convert immune evasive tumors susceptible to tumor-antigen CAR T-cell cytotoxicity. Using our TALEN-based gene editing platform we engineered non-alloreactive, immune evasive CAR T-cells (termed UCAR T-cells) targeting the unique CAF marker Fibroblast Activation Protein, alpha (FAP). In an orthotopic mouse model of triple-negative breast cancer (TNBC) composed of patient derived-CAFs and tumor cells, we demonstrate the efficacy of our engineered FAP UCAR T-cells in CAF depletion, reduction of desmoplasia and successful tumor infiltration. Furthermore, while previously resistant, pre-treatment with FAP UCAR T-cells now sensitized these tumors to Mesothelin (Meso) UCAR T-cell infiltration and anti-tumor cytotoxicity. Combination therapy of FAP UCAR, Meso UCAR T cells and the checkpoint inhibitor anti-PD-1 significantly reduced tumor burden and prolonged mice survival. Our study thus proposes a novel treatment paradigm for successful CAR T-cell immunotherapy against stroma-rich solid tumors.
Collapse
Affiliation(s)
- Shipra Das
- Cellectis Inc, New York, NY, United States
| | | | | | | |
Collapse
|
10
|
Kashima S, Braun DA. The Changing Landscape of Immunotherapy for Advanced Renal Cancer. Urol Clin North Am 2023; 50:335-349. [PMID: 36948676 DOI: 10.1016/j.ucl.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The management of advanced renal cell carcinoma has advanced tremendously over the past decade, but most patients still do not receive durable clinical benefit from current therapies. Renal cellcarcinoma is an immunogenic tumor, historically with conventional cytokine therapies, such as interleukin-2 and interferon-α, and contemporarily with the introduction of immune checkpoint inhibitors. Now the central therapeutic strategy in renal cell carcinoma is combination therapies including immunecheckpoint inhibitors. In this Review, we look back on the historical changes in systemic therapy for advanced renal cell carcinoma, and focus on the latest developments and prospects in this field.
Collapse
Affiliation(s)
- Soki Kashima
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA; Department of Urology, Akita University, Graduate School of Medicine, Akita, Japan
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA.
| |
Collapse
|
11
|
Xia Q, Tang Y, Li W, Liang T, Zhou Y, Liu J, Liu F. Surface-Engineered Monocyte Immunotherapy Combined Graphene Quantum Dots Effective Against Solid Tumor Targets. Int J Nanomedicine 2023; 18:2127-2140. [PMID: 37122502 PMCID: PMC10145394 DOI: 10.2147/ijn.s404486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The immunosuppressive tumor microenvironment (TME) of solid tumors inhibits most drug delivery system-based nanomaterials from achieving deep penetration in tumor tissue and interferes with T cell activity in terms of differentiation and exhaustion, which is becoming a critical therapy hurdle for solid tumors. Therefore, developing a therapeutic strategy with abilities of rapid establishment of tumor-targeted cells, elimination of immune obstacles, and enhanced active immunization is very important, while is still a big challenge. Methods A new strategy was explored to enhance immune therapy via the conjugation of microRNA155 (miR) to the surface of therapeutic monocyte with graphene quantum dots (GQDs). Results TME was reversed using surface-engineered monocyte immunotherapy via reprogramming pro-tumoral M2 TAMs into antitumor M1, and thus tumor elimination was dramatically enhanced. Conclusion Such a surface-engineered monocyte immunotherapy has been demonstrated to be well tolerated to intravenous administration and bio-compatible, showing the potential to be extended for the solid tumor treatment.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Wang Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China
- Correspondence: Feila Liu, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People’s Republic of China, Tel +86-15123002638, Fax +86 2362563190, Email
| |
Collapse
|