1
|
Zhao Y, Chen Z, Wu Y, Zhang J, Zhang H, Han K, Wang H, Li H, Luan X. Human placental mesenchymal stromal cells promote the formation of CD8 +CD122 +PD-1 +Tregs via CD73/Foxo1 to alleviate liver injury in graft-versus-host disease mice. Int Immunopharmacol 2024; 138:112554. [PMID: 38968861 DOI: 10.1016/j.intimp.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Human placental mesenchymal stromal cells (hPMSCs) are known to limit graft-versus-host disease (GVHD). CD8+CD122+PD-1+Tregs have been shown to improve the survival of GVHD mice. However, the regulatory roles of hPMSCs in this subgroup remain unclear. Here, the regulatory mechanism of hPMSCs in reducing liver fibrosis in GVHD mice by promoting CD8+CD122+PD-1+Tregs formation and controlling the balance of IL-6 and IL-10 were explored. METHODS A GVHD mouse model was constructed using C57BL/6J and BALB/c mice and treated with hPMSCs. LX-2 cells were explored to study the effects of IL-6 and IL-10 on the activation of hepatic stellate cells (HSCs). The percentage of CD8+CD122+PD-1+Tregs and IL-10 secretion were determined using FCM. Changes in hepatic tissue were analysed by HE, Masson, multiple immunohistochemical staining and ELISA, and the effects of IL-6 and IL-10 on LX-2 cells were detected using western blotting. RESULTS hPMSCs enhanced CD8+CD122+PD-1+Treg formation via the CD73/Foxo1 and promoted IL-10, p53, and MMP-8 levels, but inhibited IL-6, HLF, α-SMA, Col1α1, and Fn levels in the liver of GVHD mice through CD73. Positive and negative correlations of IL-6 and IL-10 between HLF were found in liver tissue, respectively. IL-6 upregulated HLF, α-SMA, and Col1α1 expression via JAK2/STAT3 pathway, whereas IL-10 upregulated p53 and inhibited α-SMA and Col1α1 expression in LX-2 cells by activating STAT3. CONCLUSIONS hPMSCs promoted CD8+CD122+PD-1+Treg formation and IL-10 secretion but inhibited HSCs activation and α-SMA and Col1α1 expression by CD73, thus controlling the balance of IL-6 and IL-10, and alleviating liver injury in GVHD mice.
Collapse
Affiliation(s)
- Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Zhenghua Chen
- Department of Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Hua Wang
- Department of Hematology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, Shandong Province 264003, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China.
| |
Collapse
|
2
|
Gan W, Sun BY, Yang ZF, Ye C, Wang ZT, Zhou C, Sun GQ, Yi Y, Qiu SJ. Enhancing hepatocellular carcinoma management: prognostic value of integrated CCL17, CCR4, CD73, and HHLA2 expression analysis. J Cancer Res Clin Oncol 2024; 150:325. [PMID: 38914802 PMCID: PMC11196339 DOI: 10.1007/s00432-024-05832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.
Collapse
Affiliation(s)
- Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Ye
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Möbs C, Jung AL. Extracellular vesicles: Messengers of allergic immune responses and novel therapeutic strategy. Eur J Immunol 2024; 54:e2350392. [PMID: 38361213 DOI: 10.1002/eji.202350392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nanosized particles released by nearly every cell type across all kingdoms of life. As a result, EVs are ubiquitously present in various human body fluids. Composed of a lipid bilayer, EVs encapsulate proteins, nucleic acids, and metabolites, thus playing a crucial role in immunity, for example, by enabling intercellular communication. More recently, there has been increasing evidence that EVs can also act as key regulators of allergic immune responses. Their ability to facilitate cell-to-cell contact and to transport a variety of different biomolecules enables active modulation of both innate and adaptive immune processes associated with allergic reactions. A comprehensive understanding of the intricate mechanisms underlying the interactions among allergens, immune cells, and EVs is imperative to develop innovative strategies for controlling allergic responses. This review highlights the recent roles of host cell- and bacteria-derived EVs in allergic diseases, presenting experimental and clinical evidence that underscores their significance. Additionally, the therapeutic potential of EVs in allergy management is outlined, along with the challenges associated with targeted delivery and cargo stability for clinical use. Optimization of EV composition and targeting strategies holds promise for advancing translational applications and establishing EVs as biomarkers or safe therapeutics for assessing allergic reactions. For these reasons, EVs represent a promising avenue for advancing both our understanding and management of allergic immune processes.
Collapse
Affiliation(s)
- Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
5
|
Ray A, Du T, Wan X, Song Y, Pillai SC, Musa MA, Fang T, Moore J, Blank B, Du X, Chen X, Warne R, Sutimantanapi D, Lui F, Zavorotinskaya T, Colas C, Friedman L, Junttila MR, Chauhan D, Anderson KC. A novel small molecule inhibitor of CD73 triggers immune-mediated multiple myeloma cell death. Blood Cancer J 2024; 14:58. [PMID: 38594241 PMCID: PMC11004003 DOI: 10.1038/s41408-024-01019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
CD73 is the key ectoenzyme involved in the generation of AMP-derived adenosine, which contributes to immunosuppression in the MM BM milieu. Blocking CD73 activity with a potent, selective, orally bioavailable CD73 inhibitor ORIC-533 decreases adenosine generation, overcomes immune suppression, and restores immune cell-mediated MM cell lysis. Based on these preclinical studies, a multi-center clinical trial of ORIC-533 has been initiated in patients with relapsed refractory MM (NCT05227144).
Collapse
Affiliation(s)
- Arghya Ray
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Ting Du
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xueping Wan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Song
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sindhu C Pillai
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Md Abu Musa
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Teng Fang
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jared Moore
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Brian Blank
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Xiaohui Du
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Xi Chen
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Robert Warne
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | | | - Fang Lui
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | | | | | - Lori Friedman
- ORIC Pharmaceuticals, Inc., South San Francisco, CA, USA
| | | | - Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zhu Y, Banerjee A, Xie P, Ivanov AA, Uddin A, Jiao Q, Chi JJ, Zeng L, Lee JY, Xue Y, Lu X, Cristofanilli M, Gradishar WJ, Henry CJ, Gillespie TW, Bhave MA, Kalinsky K, Fu H, Bahar I, Zhang B, Wan Y. Pharmacological suppression of the OTUD4/CD73 proteolytic axis revives antitumor immunity against immune-suppressive breast cancers. J Clin Invest 2024; 134:e176390. [PMID: 38530357 PMCID: PMC11093616 DOI: 10.1172/jci176390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-β signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ping Xie
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrey A. Ivanov
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Amad Uddin
- Department of Pharmacology and Chemical Biology and
| | - Qiao Jiao
- Department of Pharmacology and Chemical Biology and
| | - Junlong Jack Chi
- Department of Pharmacology and Chemical Biology and
- Driskill Graduate Program (DPG), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical Biology and
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - William J. Gradishar
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Curtis J. Henry
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics
| | - Theresa W. Gillespie
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Surgery, and
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manali Ajay Bhave
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Bin Zhang
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yong Wan
- Department of Pharmacology and Chemical Biology and
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Lamendour L, Gilotin M, Deluce-Kakwata Nkor N, Lakhrif Z, Meley D, Poupon A, Laboute T, di Tommaso A, Pin JJ, Mulleman D, Le Mélédo G, Aubrey N, Watier H, Velge-Roussel F. Bispecific antibodies tethering innate receptors induce human tolerant-dendritic cells and regulatory T cells. Front Immunol 2024; 15:1369117. [PMID: 38601165 PMCID: PMC11005913 DOI: 10.3389/fimmu.2024.1369117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
There is an urgent need for alternative therapies targeting human dendritic cells (DCs) that could reverse inflammatory syndromes in many autoimmune and inflammatory diseases and organ transplantations. Here, we describe a bispecific antibody (bsAb) strategy tethering two pathogen-recognition receptors at the surface of human DCs. This cross-linking switches DCs into a tolerant profile able to induce regulatory T-cell differentiation. The bsAbs, not parental Abs, induced interleukin 10 and transforming growth factor β1 secretion in monocyte-derived DCs and human peripheral blood mononuclear cells. In addition, they induced interleukin 10 secretion by synovial fluid cells in rheumatoid arthritis and gout patients. This concept of bsAb-induced tethering of surface pathogen-recognition receptors switching cell properties opens a new therapeutic avenue for controlling inflammation and restoring immune tolerance.
Collapse
Affiliation(s)
- Lucille Lamendour
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Mäelle Gilotin
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Nora Deluce-Kakwata Nkor
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Zineb Lakhrif
- Infectiologie et Santé Publique (ISP) UMR 1282, INRAE, Team BioMAP, Université de Tours, Tours, France
| | - Daniel Meley
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Anne Poupon
- institut de recherche pour l’agriculture, l’alimentation et ’environnement (INRAE) UMR 0085, centre de recherche scientifique (CNRS) UMR 7247, Physiologie de la Reproduction et des Comportements, Université de Tours, Tours, France
- MAbSilico, Tours, France
| | - Thibaut Laboute
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Anne di Tommaso
- Infectiologie et Santé Publique (ISP) UMR 1282, INRAE, Team BioMAP, Université de Tours, Tours, France
| | | | - Denis Mulleman
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
- Service de Rhumatologie, Centre Hospitalo-Universitaire (CHRU) de Tours, Tours, France
| | - Guillaume Le Mélédo
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
- Service de Rhumatologie, Centre Hospitalo-Universitaire (CHRU) de Tours, Tours, France
| | - Nicolas Aubrey
- Infectiologie et Santé Publique (ISP) UMR 1282, INRAE, Team BioMAP, Université de Tours, Tours, France
| | - Hervé Watier
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| | - Florence Velge-Roussel
- EA7501, Groupe Innovation et Ciblage Cellulaire, Team Fc Récepteurs, Anticorps et MicroEnvironnement (FRAME), Université de Tours, Tours, France
| |
Collapse
|
8
|
Wood S, Branch J, Vasquez P, DeGuzman MM, Brown A, Sagcal-Gironella AC, Singla S, Ramirez A, Vogel TP. Th17/1 and ex-Th17 cells are detected in patients with polyarticular juvenile arthritis and increase following treatment. Pediatr Rheumatol Online J 2024; 22:32. [PMID: 38431635 PMCID: PMC10908086 DOI: 10.1186/s12969-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND A better understanding of the pathogenesis of polyarticular juvenile idiopathic arthritis (polyJIA) is needed to aide in the development of data-driven approaches to guide selection between therapeutic options. One inflammatory pathway of interest is JAK-STAT signaling. STAT3 is a transcription factor critical to the differentiation of inflammatory T helper 17 cells (Th17s). Previous studies have demonstrated increased STAT3 activation in adult patients with rheumatoid arthritis, but less is known about STAT3 activation in polyJIA. We hypothesized that Th17 cells and STAT3 activation would be increased in treatment-naïve polyJIA patients compared to pediatric controls. METHODS Blood from 17 patients with polyJIA was collected at initial diagnosis and again if remission was achieved (post-treatment). Pediatric healthy controls were also collected. Peripheral blood mononuclear cells were isolated and CD4 + T cell subsets and STAT activation (phosphorylation) were evaluated using flow cytometry. Data were analyzed using Mann-Whitney U and Wilcoxon matched-pairs signed rank tests. RESULTS Treatment-naïve polyJIA patients had increased Th17 cells (CD3 + CD4 + interleukin(IL)-17 +) compared to controls (0.15% v 0.44%, p < 0.05), but Tregs (CD3 + CD4 + CD25 + FOXP3 +) from patients did not differ from controls. Changes in STAT3 phosphorylation in CD4 + T cells following ex vivo stimulation were not significantly different in patients compared to controls. We identified dual IL-17 + and interferon (IFN)γ + expressing CD4 + T cells in patients, but not controls. Further, both Th17/1 s (CCR6 + CD161 + IFNγ + IL-17 +) and ex-Th17s (CCR6 + CD161 + IFNγ + IL-17neg) were increased in patients' post-treatment (Th17/1: 0.3% v 0.07%, p < 0.05 and ex-Th17s: 2.3% v 1.4%, p < 0.05). The patients with the highest IL-17 expressing cells post-treatment remained therapy-bound. CONCLUSIONS Patients with polyJIA have increased baseline Th17 cells, potentially reflecting higher tonic STAT3 activation in vivo. These quantifiable immune markers may identify patients that would benefit upfront from pathway-focused biologic therapies. Our data also suggest that inflammatory CD4 + T cell subsets not detected in controls but increased in post-treatment samples should be further evaluated as a tool to stratify patients in remission on medication. Future work will explore these proposed diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Stephanie Wood
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Justin Branch
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Priscilla Vasquez
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Marietta M DeGuzman
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Amanda Brown
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Anna Carmela Sagcal-Gironella
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Saimun Singla
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Andrea Ramirez
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA.
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Nessim Kostandy E, Suh JH, Tian X, Okeugo B, Rubin E, Shirai S, Luo M, Taylor CM, Kim KH, Rhoads JM, Liu Y. Probiotic Limosilactobacillus reuteri DSM 17938 Changes Foxp3 Deficiency-Induced Dyslipidemia and Chronic Hepatitis in Mice. Nutrients 2024; 16:511. [PMID: 38398835 PMCID: PMC10892585 DOI: 10.3390/nu16040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The probiotic Limosilactobacillus reuteri DSM 17938 produces anti-inflammatory effects in scurfy (SF) mice, a model characterized by immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (called IPEX syndrome in humans), caused by regulatory T cell (Treg) deficiency and is due to a Foxp3 gene mutation. Considering the pivotal role of lipids in autoimmune inflammatory processes, we investigated alterations in the relative abundance of lipid profiles in SF mice (± treatment with DSM 17938) compared to normal WT mice. We also examined the correlation between plasma lipids and gut microbiota and circulating inflammatory markers. We noted a significant upregulation of plasma lipids associated with autoimmune disease in SF mice, many of which were downregulated by DSM 17938. The upregulated lipids in SF mice demonstrated a significant correlation with gut bacteria known to be implicated in the pathogenesis of various autoimmune diseases. Chronic hepatitis in SF livers responded to DSM 17938 treatment with a reduction in hepatic inflammation. Altered gene expression associated with lipid metabolism and the positive correlation between lipids and inflammatory cytokines together suggest that autoimmunity leads to dyslipidemia with impaired fatty acid oxidation in SF mice. Probiotics are presumed to contribute to the reduction of lipids by reducing inflammatory pathways.
Collapse
Affiliation(s)
- Erini Nessim Kostandy
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Center, Houston, TX 77030, USA
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Erin Rubin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sara Shirai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
10
|
Chen YT, Lohia GK, Chen S, Riquelme SA. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility. J Innate Immun 2024; 16:143-158. [PMID: 38310854 PMCID: PMC10914382 DOI: 10.1159/000536649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.
Collapse
Affiliation(s)
- Ying-Tsun Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Gaurav Kumar Lohia
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Samantha Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Spiliopoulou P, Kaur P, Hammett T, Di Conza G, Lahn M. Targeting T regulatory (T reg) cells in immunotherapy-resistant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:2. [PMID: 38318526 PMCID: PMC10838381 DOI: 10.20517/cdr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Primary or secondary (i.e., acquired) resistance is a common occurrence in cancer patients and is often associated with high numbers of T regulatory (Treg) cells (CD4+CD25+FOXP3+). The approval of ipilimumab and the development of similar pharmacological agents targeting cell surface proteins on Treg cells demonstrates that such intervention may overcome resistance in cancer patients. Hence, the clinical development and subsequent approval of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) targeting agents can serve as a prototype for similar agents. Such new agents aspire to be highly specific and have a reduced toxicity profile while increasing effector T cell function or effector T/T regulatory (Teff/Treg) ratio. While clinical development with large molecules has shown the greatest advancement, small molecule inhibitors that target immunomodulation are increasingly entering early clinical investigation. These new small molecule inhibitors often target specific intracellular signaling pathways [e.g., phosphoinositide-3-kinase delta (PI3K-δ)] that play an important role in regulating the function of Treg cells. This review will summarize the lessons currently applied to develop novel clinical agents that target Treg cells.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Drug Development Program, Phase I Unit, Beatson West of Scotland Cancer Center, Glasgow G12 0YN, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Paramjit Kaur
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Tracey Hammett
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Giusy Di Conza
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Michael Lahn
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| |
Collapse
|
12
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
13
|
Sharon S, Daher-Ghanem N, Zaid D, Gough MJ, Kravchenko-Balasha N. The immunogenic radiation and new players in immunotherapy and targeted therapy for head and neck cancer. FRONTIERS IN ORAL HEALTH 2023; 4:1180869. [PMID: 37496754 PMCID: PMC10366623 DOI: 10.3389/froh.2023.1180869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Although treatment modalities for head and neck cancer have evolved considerably over the past decades, survival rates have plateaued. The treatment options remained limited to definitive surgery, surgery followed by fractionated radiotherapy with optional chemotherapy, and a definitive combination of fractionated radiotherapy and chemotherapy. Lately, immunotherapy has been introduced as the fourth modality of treatment, mainly administered as a single checkpoint inhibitor for recurrent or metastatic disease. While other regimens and combinations of immunotherapy and targeted therapy are being tested in clinical trials, adapting the appropriate regimens to patients and predicting their outcomes have yet to reach the clinical setting. Radiotherapy is mainly regarded as a means to target cancer cells while minimizing the unwanted peripheral effect. Radiotherapy regimens and fractionation are designed to serve this purpose, while the systemic effect of radiation on the immune response is rarely considered a factor while designing treatment. To bridge this gap, this review will highlight the effect of radiotherapy on the tumor microenvironment locally, and the immune response systemically. We will review the methodology to identify potential targets for therapy in the tumor microenvironment and the scientific basis for combining targeted therapy and radiotherapy. We will describe a current experience in preclinical models to test these combinations and propose how challenges in this realm may be faced. We will review new players in targeted therapy and their utilization to drive immunogenic response against head and neck cancer. We will outline the factors contributing to head and neck cancer heterogeneity and their effect on the response to radiotherapy. We will review in-silico methods to decipher intertumoral and intratumoral heterogeneity and how these algorithms can predict treatment outcomes. We propose that (a) the sequence of surgery, radiotherapy, chemotherapy, and targeted therapy should be designed not only to annul cancer directly, but to prime the immune response. (b) Fractionation of radiotherapy and the extent of the irradiated field should facilitate systemic immunity to develop. (c) New players in targeted therapy should be evaluated in translational studies toward clinical trials. (d) Head and neck cancer treatment should be personalized according to patients and tumor-specific factors.
Collapse
Affiliation(s)
- Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral and Maxillofacial Surgery, Boston University and Boston Medical Center, Boston, MA, United States
| | - Narmeen Daher-Ghanem
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deema Zaid
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Da M, Chen L, Enk A, Mahnke K. Tolerance to 2,4-Dinitrofluorobenzene‒Induced Contact Hypersensitivity Is Mediated by CD73-Expressing Tissue-homing Regulatory T Cells. J Invest Dermatol 2022; 143:1011-1022.e8. [PMID: 36539031 DOI: 10.1016/j.jid.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Regulatory T cells (Tregs) express CD73, an ectonucleotidase that converts adenosine (Ado) monophosphate to Ado, which has been shown to suppress immune reactions. To investigate the role(s) of CD73+ Tregs during the induction of tolerance, we used a 2,4-dinitrofluorobenzene‒driven contact hypersensitivity model, in which tolerance can be induced by pretreating wild type mice with 2,4-dinitrothiocyanobenzene. CD73-deficient mice were unable to acquire tolerance. Likewise, transfer of CD73‒/‒ Tregs failed to suppress 2,4-dinitrofluorobenzene‒induced ear swelling in wild type mice, whereas transfer of wild type‒derived Tregs into CD73‒/‒ mice re-established tolerance. This indicates a crucial role of CD73+ Tregs for skin-induced tolerance. Furthermore, we found that 2,4-dinitrothiocyanobenzene induces more activated CD73+ tissue-homing Tregs (marked by Ki-67, CTLA4, CCR4, CD103, CCR6, and CD49b expression) in draining lymph nodes and blood, eventually accumulating in the skin. The application of anti-CD73 antibodies that block CD73-derived Ado production as well as the injection of Ado deaminase, which degrades Ado in tissues, abrogated tolerance induction. Thus, our data indicate that CD73+ Ado-producing Tregs are crucial for the regulation of contact hypersensitivity reactions and tolerance induction in the skin and that manipulating the function(s) of CD73 in tissues may offer a tool to influence autoimmunity and inflammation in vivo.
Collapse
Affiliation(s)
- Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|