1
|
Frascatani R, Colella M, Monteleone G. Hepcidin Is a Valuable Therapeutic Target for Colorectal Cancer. Cancers (Basel) 2024; 16:4068. [PMID: 39682254 DOI: 10.3390/cancers16234068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent neoplasms and a major cause of cancer death worldwide. Despite recent advances in treatment approaches, the prognosis of advanced CRC remains poor, thus indicating the necessity of more effective treatments for CRC patients. CRC cells produce high levels of hepcidin, a peptide hormone that binds to the membrane-bound ferroportin and promotes its internalization and degradation, thus sequestering iron into the cancer cells with the downstream effect of enhancing tumor growth. Additionally, CRC cell-expressed hepcidin prolongs cell survival and, by targeting both CD8+ T cells and myeloid cells, restrains the induction of an efficient immune response against tumor antigens. The greatest expression of hepcidin is found in patients with metastatic CRC, and CRC patients with high hepcidin content have a worse survival rate than those with low hepcidin content. In the present article, we review the data supporting the prominent role of hepcidin in colon tumorigenesis and discuss how hepcidin inhibitors can help treat CRC patients in the metastatic setting with particular regard to the impact of hepcidin modulation on immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
2
|
张 伟, 邹 琸, 朱 永, 王 敏, 马 彩, 武 峻, 石 昕, 刘 茜. [Expression of interleukin-34 in tongue squamous cell carcinoma and its clinical implications]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:2111-2117. [PMID: 38189398 PMCID: PMC10774107 DOI: 10.12122/j.issn.1673-4254.2023.12.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To investigate the expression of interleukin- 34 (IL-34) in tongue squamous cell carcinoma (TSCC) and its clinical implications. METHODS Serum IL-34 level was detected in 36 patients with TSCC and 36 healthy individuals using enzymelinked immunosorbent assay (ELISA). The expressions of IL-34 mRNA and protein levels in TSCC and adjacent tissues were examined in 41 patients using real-time fluorescence quantitative PCR (qRT-PCR) and immunohistochemistry (IHC), and their correlation with the clinicopathological features of the patients was further analyzed. Informatic analysis of the differentially expressed genes related with IL-34 in TSCC was carried out based on String database, LinkedOmics database and GEO database, and GO functional analysis and KEGG signaling pathway enrichment analysis were performed using Webgestalt database. RESULTS The serum level of IL-34 was significantly lower in TSCC patients than in the healthy individuals (P < 0.001), and its expression level was also significantly lower in the tumor tissues than in the adjacent tissues (P < 0.001). The expression level of IL-34 in TSCC tissues was related with lymph node metastasis and TNM staging (P < 0.05), but not with age, gender, smoking, drinking, or tumor size (P > 0.05). Informatic analysis suggested that IL-34 had the strongest correlation with CSF1R and PTPRJ. IL-34 and its related genes in TSCC were enriched mainly in bone marrow cell differentiation, collagen-containing extracellular matrix, and cytokine binding and signal receptor activator activity. KEGG signaling pathway enrichment showed that IL-34 and the related differentially expressed genes were involved mainly in osteoclast differentiation, protein polysaccharide in cancer, and the MAPK signaling pathway. CONCLUSION IL-34 is lowly expressed in TSCC and participates in the occurrence and progression of TSCC, and can be potentially used as a new diagnostic biomarker and therapeutic target for TSCC.
Collapse
Affiliation(s)
- 伟健 张
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
- 蚌埠医学院口腔医学院,安徽 蚌埠 233030Department of stomatology, Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - 琸玥 邹
- 蚌埠医学院感染与免疫安徽省重点实验室,安徽 蚌埠 233030Anhui Province Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233030, China
| | - 永娜 朱
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
| | - 敏 王
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
| | - 彩云 马
- 蚌埠医学院生命科学学院,安徽 蚌埠 233030School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - 峻捷 武
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
- 蚌埠医学院口腔医学院,安徽 蚌埠 233030Department of stomatology, Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - 昕 石
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
- 蚌埠医学院口腔医学院,安徽 蚌埠 233030Department of stomatology, Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - 茜 刘
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital, Bengbu Medical College, Bengbu 233040, China
| |
Collapse
|
3
|
Yi B, Zhang S, Yan S, Liu Y, Feng Z, Chu T, Liu J, Wang W, Xue J, Zhang C, Wang Y. Marsdenia tenacissima enhances immune response of tumor infiltrating T lymphocytes to colorectal cancer. Front Immunol 2023; 14:1238694. [PMID: 37649480 PMCID: PMC10465246 DOI: 10.3389/fimmu.2023.1238694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Tumor-infiltrating T lymphocytes in the tumor microenvironment are critical factors influencing the prognosis and chemotherapy outcomes. As a Chinese herbal medicine, Marsdenia tenacissima extract (MTE) has been widely used to treat cancer in China. Its immunoregulatory effects on tumor-associated macrophages is well known, but whether it regulates tumor-infiltrating T-cell functions remains unclear. Method We collected 17 tumor samples from MTE-administered colorectal cancer patients, 13 of which showed upregulation of CD3+/CD8+ tumor-infiltrating T cells. Further in vitro and in vivo experiments were performed to investigate the regulatory effects of MTE on tumor-infiltrating T cells and immune escape of tumors. Results Under single and co-culture conditions, MTE inhibited TGF-β1 and PD-L1 expression in the colorectal cancer (CRC) cell lines HCT116 and LoVo. In Jurkat cells, MTE inhibited FOXP3 and IL-10 expression, increased IL-2 expression, but had no effect on PD-1 expression. These findings were confirmed in vitro using subcutaneous and colitis-associated CRC mouse models. MTE also increased the density of CD3+/CD8+ tumor-infiltrating T cells and exhibited considerable tumor-suppressive effects in these two tumor mouse models. Conclusions Our findings suggested that MTE inhibits the immune escape of cancer cells, a precipitating factor increasing the immune response of T lymphocytes.
Collapse
Affiliation(s)
- Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suying Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Zhang D, Cui X, Li Y, Wang R, Wang H, Dai Y, Ren Q, Wang L, Zheng G. Sox13 and M2-like leukemia-associated macrophages contribute to endogenous IL-34 caused accelerated progression of acute myeloid leukemia. Cell Death Dis 2023; 14:308. [PMID: 37149693 PMCID: PMC10164149 DOI: 10.1038/s41419-023-05822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.
Collapse
Affiliation(s)
- Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
5
|
Alshaebi F, Safi M, Algabri YA, Al-Azab M, Aldanakh A, Alradhi M, Reem A, Zhang C. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Front Oncol 2023; 13:1099696. [PMID: 36798830 PMCID: PMC9927403 DOI: 10.3389/fonc.2023.1099696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Interleukin-34 (IL-34) is a cytokine that is involved in the regulation of immune cells, including macrophages, in the tumor microenvironment (TME). Macrophages are a type of immune cell that can be found in large numbers within the TME and have been shown to have a role in the suppression of immune responses in cancer. This mmune suppression can contribute to cancer development and tumors' ability to evade the immune system. Immune checkpoint inhibitors (ICIs) are a type of cancer treatment that target proteins on immune cells that act as "checkpoints," regulating the activity of the immune system. Examples of these proteins include programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). ICIs work by blocking the activity of these proteins, allowing the immune system to mount a stronger response against cancer cells. The combination of IL-34 inhibition with ICIs has been proposed as a potential treatment option for cancer due to the role of IL-34 in the TME and its potential involvement in resistance to ICIs. Inhibiting the activity of IL-34 or targeting its signaling pathways may help to overcome resistance to ICIs and improve the effectiveness of these therapies. This review summarizes the current state of knowledge concerning the involvement of IL-34-mediated regulation of TME and the promotion of ICI resistance. Besides, this work may shed light on whether targeting IL-34 might be exploited as a potential treatment option for cancer patients in the future. However, further research is needed to fully understand the mechanisms underlying the role of IL-34 in TME and to determine the safety and efficacy of this approach in cancer patients.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China
| | - Mohammed Safi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| | - Yousif A. Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Alradhi
- Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Alariqi Reem
- Faculty of Medicine and Health Sciences, Amran University, Amran, Yemen
| | - Caiqing Zhang
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| |
Collapse
|
6
|
Boruah P, Deka N. Interleukin 34 in Disease Progressions: A Comprehensive Review. Crit Rev Immunol 2023; 43:25-43. [PMID: 37943151 DOI: 10.1615/critrevimmunol.2023050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
IL-34, a cytokine, discovered a decade before and is known to be a colony stimulating factor CSF-1 receptor (CSF-1R) ligand. Along with CSF-1R, it also interacts with syndecan-1 receptors and protein-tyrosine phosphatase (PTP-ζ). Hence, IL-34 takes part in a number of biological activities owing to its involvement in different signaling pathways. This review was done to analyze the recent studies on the functions of IL-34 in progression of diseases. The role of IL-34 under the physiological and pathological settings is studied by reviewing current data. In the last ten years, studies suggested that the IL-34 was involved in the regulation of morbid states such as inflammatory diseases, infections, transplant rejection, autoimmune diseases, neurologic diseases, and cancer. In general, the involvement of IL-34 is observed in many serious health ailments like metabolic diseases, heart diseases, infections and even cancer. As such, IL-34 can be regarded as a therapeutic target, potential biomarker or as a therapeutic tool, which ought to be assessed in future research activities.
Collapse
Affiliation(s)
- Prerona Boruah
- Shanghai Veterinary Research Institute, Shanghai, China; School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Nikhita Deka
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
7
|
Safi M, Fadhl AS, Algabri YA, Zhang C. IL-34 and Immune Checkpoint Inhibitors Resistant through Macrophages: Pan-Cancer Overview. J Inflamm Res 2023; 16:1209-1212. [PMID: 36974205 PMCID: PMC10039624 DOI: 10.2147/jir.s397749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Mohammed Safi
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Al-shaebi Fadhl
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Al-shaebi Fadhl, Email
| | - Yousif A Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Caiqing Zhang
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Caiqing Zhang, Department of respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, 250023, People’s Republic of China, Email
| |
Collapse
|
8
|
Di Grazia A, Di Fusco D, Franzè E, Colella M, Strimpakos G, Salvatori S, Formica V, Laudisi F, Maresca C, Colantoni A, Ortenzi A, Stolfi C, Monteleone I, Monteleone G. Hepcidin Upregulation in Colorectal Cancer Associates with Accumulation of Regulatory Macrophages and Epithelial-Mesenchymal Transition and Correlates with Progression of the Disease. Cancers (Basel) 2022; 14:5294. [PMID: 36358713 PMCID: PMC9658525 DOI: 10.3390/cancers14215294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Advanced, metastatic colorectal cancer (CRC) is associated with high rate of mortality because of its poor responsiveness to chemotherapy/immunotherapy. Recent studies have shown that hepcidin, a peptide hormone produced mainly by hepatocytes, is expressed by and enhances the growth of tumor cells. We here assessed whether hepcidin expression helps identify subsets of CRC with advanced and aggressive course. By integrating results of in vitro/ex vivo studies with data of bioinformatics databases, we initially showed that hepcidin RNA and protein expression was more pronounced in tissue samples taken from the tumor area, as compared to the macroscopically unaffected, adjacent, colonic mucosa of CRC patients. The induction of hepcidin in the colonic epithelial cell line HCEC-1ct by interleukin (IL)-6, IL-21 and IL-23 occurred via a Stat3-dependent mechanism and, in primary CRC cells, hepcidin co-localized with active Stat3. In CRC tissue, hepcidin content correlated mainly with macrophage accumulation and IL-10 and CD206 expression, two markers of regulatory macrophages. Consistently, both IL-10 and CD206 were up-regulated by hepcidin in blood mononuclear cells. The highest levels of hepcidin were found in metastatic CRC and survival analysis showed that high expression of hepcidin associated with poor prognosis. Moreover, hepcidin expression correlated with markers of epithelial-to-mesenchymal transition and the silencing of hepcidin in CRC cells reduced epithelial-to-mesenchymal transition markers. These findings indicate that hepcidin is markedly induced in the advanced stages of CRC and suggest that it could serve as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology (IBBC), National Council of Research (CNR), 00146 Rome, Italy
| | - Silvia Salvatori
- Gastroenterology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Vincenzo Formica
- Medical Oncology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|