1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024; 19:561-577. [PMID: 39469920 PMCID: PMC11633413 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| |
Collapse
|
2
|
Yao JP, Feng XM, Wang L, Li YQ, Zhu ZY, Yan XY, Yang YQ, Li Y, Zhang W. Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway. Chin J Integr Med 2024; 30:251-259. [PMID: 38212498 DOI: 10.1007/s11655-023-3610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway. METHODS Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR. RESULTS The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01). CONCLUSIONS EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Collapse
Affiliation(s)
- Jun-Peng Yao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiu-Mei Feng
- Department of Rehabilitation Medicine, Guanghan People's Hospital, Guanghan, Sichuan Province, 618399, China
| | - Lu Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan-Qiu Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zi-Yue Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang-Yun Yan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Qing Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Zhao X, Deng H, Feng Y, Wang Y, Yao X, Ma Y, Zhang L, Jie J, Yang P, Yang Y. Immune-cell-mediated tissue engineering strategies for peripheral nerve injury and regeneration. J Mater Chem B 2024; 12:2217-2235. [PMID: 38345580 DOI: 10.1039/d3tb02557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xueying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Hui Deng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuehan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaomin Yao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuyang Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China.
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| |
Collapse
|
4
|
Nishijima T, Okuyama K, Shibata S, Kimura H, Shinozaki M, Ouchi T, Mabuchi Y, Ohno T, Nakayama J, Hayatsu M, Uchiyama K, Shindo T, Niiyama E, Toita S, Kawada J, Iwamoto T, Nakamura M, Okano H, Nagoshi N. Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury. Inflamm Regen 2024; 44:6. [PMID: 38347645 PMCID: PMC10863150 DOI: 10.1186/s41232-024-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.
Collapse
Affiliation(s)
- Takayuki Nishijima
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kentaro Okuyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Hiroo Kimura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic Surgery, Kitasato Institute Hospital, 9-1, Shirokane 5-Chome, Minato-Ku, Tokyo, 108-8642, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Yo Mabuchi
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Floor 4, Haneda Innovation City Zone A, 1-1-4, Hanedakuko, Ota-Ku, Tokyo, 144-0041, Japan
| | - Tatsukuni Ohno
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Junpei Nakayama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Keiko Uchiyama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Tomoko Shindo
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Eri Niiyama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
| | - Sayaka Toita
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
- Present address: Faculty of Materials for Energy, Graduate School of Natural Science and Technology, Shimane University, Matsue, Shimane, Japan
| | - Jiro Kawada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Jiksak Bioengineering, Inc, Cybernics Medical Innovation Base-A Room 322, 3-25-16 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-0821, Japan
| | - Takuji Iwamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Ling J, He C, Zhang S, Zhao Y, Zhu M, Tang X, Li Q, Xu L, Yang Y. Progress in methods for evaluating Schwann cell myelination and axonal growth in peripheral nerve regeneration via scaffolds. Front Bioeng Biotechnol 2023; 11:1308761. [PMID: 38162183 PMCID: PMC10755477 DOI: 10.3389/fbioe.2023.1308761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Peripheral nerve injury (PNI) is a neurological disorder caused by trauma that is frequently induced by accidents, war, and surgical complications, which is of global significance. The severity of the injury determines the potential for lifelong disability in patients. Artificial nerve scaffolds have been investigated as a powerful tool for promoting optimal regeneration of nerve defects. Over the past few decades, bionic scaffolds have been successfully developed to provide guidance and biological cues to facilitate Schwann cell myelination and orientated axonal growth. Numerous assessment techniques have been employed to investigate the therapeutic efficacy of nerve scaffolds in promoting the growth of Schwann cells and axons upon the bioactivities of distinct scaffolds, which have encouraged a greater understanding of the biological mechanisms involved in peripheral nerve development and regeneration. However, it is still difficult to compare the results from different labs due to the diversity of protocols and the availability of innovative technologies when evaluating the effectiveness of novel artificial scaffolds. Meanwhile, due to the complicated process of peripheral nerve regeneration, several evaluation methods are usually combined in studies on peripheral nerve repair. Herein, we have provided an overview of the evaluation methods used to study the outcomes of scaffold-based therapies for PNI in experimental animal models and especially focus on Schwann cell functions and axonal growth within the regenerated nerve.
Collapse
Affiliation(s)
- Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meifeng Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Liming Xu
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
6
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
7
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
8
|
Jiang Y, Tang X, Li T, Ling J, Yang Y. The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration. Front Bioeng Biotechnol 2022; 10:1039777. [PMID: 36329703 PMCID: PMC9622790 DOI: 10.3389/fbioe.2022.1039777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Peripheral nerve injury is a clinically common injury that causes sensory dysfunction and locomotor system degeneration, which seriously affects the quality of the patients' daily life. Long gapped defects in large nerve are difficult to repair via surgery and limited donor source of autologous nerve greatly challenges the successful nerve repair by transplantation. Significantly, remarkable progress has been made in repairing the peripheral nerve injury using artificial nerve grafts and a variety of products for peripheral nerve repair have emerged been approved globally in recent years. The raw materials of these commercial products includes natural/synthetic polymers, extracellular matrix. Despite a lot of effort, the desirable functional recovery still remains great challenges in long gapped nerve defects. Thus this review discusses the recent development of tissue engineering products for peripheral nerve repair and the design of bionic grafts improving the local microenvironment for accelerating nerve regeneration against locomotor disorder, which may provide potential strategies for the repair of long gaps or thick nerve defects by multifunctional biomaterials.
Collapse
Affiliation(s)
- Yuhui Jiang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaoxuan Tang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tao Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yumin Yang
- Medical School of Nantong University, Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|