1
|
Lu R, Luo XM. The role of gut microbiota in different murine models of systemic lupus erythematosus. Autoimmunity 2024; 57:2378876. [PMID: 39014962 DOI: 10.1080/08916934.2024.2378876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.
Collapse
Affiliation(s)
- Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Mirfeizi Z, Mahmoudi M, Jokar MH, Sahebari M, Noori E, Mehrad-Majd H, Barati M, Faridzadeh A. Impact of synbiotics on disease activity in systemic lupus erythematosus: Results from a randomized clinical trial. J Food Sci 2024. [PMID: 39437223 DOI: 10.1111/1750-3841.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects various organs in the body. In SLE, inflammatory cytokines play a crucial role in initiating and sustaining the inflammatory process. Synbiotics may help modulate these inflammatory cytokines. This randomized, double-blind, placebo-controlled clinical trial aimed to assess the impact of synbiotics intervention on interleukin-17A (IL-17A) levels, disease activity, and inflammatory factors in patients with SLE. Fifty SLE patients were randomly assigned to receive either standard therapy plus synbiotics (consisting of Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus reuteri, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum, and the prebiotic fructooligosaccharides) or standard therapy alone for 2 months. The results demonstrated a significant reduction in both protein and mRNA levels of IL-17A, as well as in the Systemic Lupus Erythematosus Disease Activity Index 2000 score, within the synbiotics group after the intervention compared to baseline. In contrast, the placebo group did not experience significant changes in IL-17A levels or disease activity. Synbiotic supplementation shows potential as an adjunctive therapeutic approach for SLE management; however, further research is needed to elucidate its underlying mechanisms. PRACTICAL APPLICATION: This study explores the use of synbiotics as a supplementary treatment for systemic lupus erythematosus, which is typically managed with immunosuppressive therapies.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hassan Jokar
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatology Department, Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Noori
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Mehrad-Majd
- Clinical Research Development Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Laboratory Sciences, School of Paramedicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Goh RCW, Maharajan MK, Gopinath D, Fang CM. The Therapeutic Effects of Probiotic on Systemic Lupus Erythematosus in Lupus Mice Models: A Systematic Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10297-1. [PMID: 38806966 DOI: 10.1007/s12602-024-10297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Increasing evidence suggests the beneficial immunomodulatory effects of probiotics can reduce inflammation in systemic lupus erythematosus (SLE). However, there is no summary of the existing evidence available. This study aims to investigate the therapeutic effects of probiotics on SLE in a lupus mouse model by examining various markers, including inflammatory cytokines, Treg cells, disease activity, and gut microbiota. A systematic search was conducted using three databases (Web of Science, PubMed, and Scopus) to identify animal studies that reported the therapeutic benefits of probiotics against SLE. Data extracted from the selected articles were qualitatively synthesized. The SYRCLE risk of bias tool was used to evaluate the risk of bias. Out of a total of 3205 articles, 12 met the inclusion criteria. Probiotic strains, quantities, and routes of administration varied among the studies. The treatment ranged from 8 to 47 weeks. Probiotic strains such as L. fermentum CECT5716, L. casei B255, L. reuteri DSM 17509, L. plantarum LP299v, and L. acidophilus can significantly reduce pro-inflammatory cytokines (TNF-α, IL-12, IL-6, IL-1β, IL-17, and IFN-γ) levels while increasing anti-inflammatory IL-10 and Treg cells. Probiotics also delay the production of autoantibodies, thus prolonging the remission period, decreasing flare frequency, and delaying disease progression. Furthermore, probiotic administration prevents gut dysbiosis, increases intestinal stability, and prevents pathogen colonization. In conclusion, probiotics can be considered a new alternative therapeutic approach for the management of SLE. Further clinical studies are required to investigate and validate the safety and effectiveness of probiotics in humans.
Collapse
Affiliation(s)
- Rachael Chaeh-Wen Goh
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Mari Kannan Maharajan
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| |
Collapse
|
4
|
Estaleen RA, Reilly CM, Luo XM. A double-edged sword: interactions of CX 3CL1/CX 3CR1 and gut microbiota in systemic lupus erythematosus. Front Immunol 2024; 14:1330500. [PMID: 38299151 PMCID: PMC10828040 DOI: 10.3389/fimmu.2023.1330500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic chronic disease initiated by an abnormal immune response to self and can affect multiple organs. SLE is characterized by the production of autoantibodies and the deposition of immune complexes. In regard to the clinical observations assessed by rheumatologists, several chemokines and cytokines also contribute to disease progression. One such chemokine and adhesion molecule is CX3CL1 (otherwise known as fractalkine). CX3CL1 is involved in cell trafficking and inflammation through recognition by its receptor, CX3CR1. The CX3CL1 protein consists of a chemokine domain and a mucin-like stalk that allows it to function both as a chemoattractant and as an adhesion molecule. In inflammation and specifically lupus, the literature displays contradictory evidence for the functions of CX3CL1/CX3CR1 interactions. In addition, the gut microbiota has been shown to play an important role in the pathogenesis of SLE. This review highlights current studies that illustrate the interactions of the gut microbiota and CX3CR1 in SLE.
Collapse
Affiliation(s)
- Rana A. Estaleen
- Department of Biomedical Sciences and Pathobiology, Virgnia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher M. Reilly
- Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virgnia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Xin Y, Huang C, Zheng M, Zhou W, Zhang B, Zhao M, Lu Q. Fecal microbiota transplantation in the treatment of systemic lupus erythematosus: What we learnt from the explorative clinical trial. J Autoimmun 2023; 141:103058. [PMID: 37179170 DOI: 10.1016/j.jaut.2023.103058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with the characterized presence of autoantibodies and resulting in multiple organ damage, which is incurable and can be lethal. The current treatments are limited and less progress has been made in drug discovery for the last few decades. Researches imply that gut dysbiosis exists in both patients and murine models with SLE, taking part in the pathogenesis of SLE through multiple mechanisms such as microbiota translocation and molecular mimicry. Intestinal interventions on the gut microbiome by fecal transplantations to reconstitute the gut-immunity homeostasis serve as a novel therapeutic option for SLE patients. Fecal microbiota transplantation (FMT), which is usually used in intestinal diseases, has been firstly demonstrated to be safe and efficient in recovering gut microbiota structure of SLE patients and reducing lupus activity in our recent clinical trial, which is the first trial testing FMT therapy in SLE treatment. In this paper, we reviewed the results of the single-arm clinical trial and made recommendations on FMT practice in SLE treatment including therapeutic indications, screening items and dosage regimen, trying to provide references for future study and clinical practice. We also came up with the unanswered questions that need to be solved by the ongoing randomized controlled trial as well as the future expectations for the intestinal intervention strategies of SLE patients.
Collapse
Affiliation(s)
- Yue Xin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Cancan Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Meiling Zheng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Mirfeizi Z, Mahmoudi M, Faridzadeh A. Probiotics as a complementary treatment in systemic lupus erythematosus: A systematic review. Health Sci Rep 2023; 6:e1640. [PMID: 37877130 PMCID: PMC10591540 DOI: 10.1002/hsr2.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that primarily affects young women. SLE has no recognized etiology but it is believed to be triggered by a number of factors, including genetic predisposition, hormonal influences, and environmental conditions. Dysbiosis in the gut microbiota has emerged as a potential mechanism connecting the intestinal microbiome to the breakdown of self-tolerance and chronic inflammation. This review aims to investigate the role of probiotics in modulating the gut microbiome and their potential therapeutic benefits in managing SLE, providing insights for future research and clinical practice. Methods We conducted a thorough search for papers published up to June 2023 in databases such as PubMed/MEDLINE, Web of Science, Scopus, and Cochrane Library. Results The systematic review identified 22 articles examining the effects of probiotics on SLE. These studies-which include in vivo tests, in vitro research, and clinical trials-indicate that probiotics may be effective against inflammation, and improve immunological responses and metabolic profiles in SLE patients. Most in vivo studies were assessed as medium to high quality, while the randomized controlled trial was deemed of high quality. Conclusion According to the findings of our systematic review, probiotics may be used in conjunction with other treatments to manage SLE. Nonetheless, current data is limited, and more randomized controlled trials would be required to fully examine their effectiveness.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Mahmoudi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Faridzadeh
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Guo M, Lu M, Chen K, Xu R, Xia Y, Liu X, Liu Z, Liu Q. Akkermansia muciniphila and Lactobacillus plantarum ameliorate systemic lupus erythematosus by possibly regulating immune response and remodeling gut microbiota. mSphere 2023; 8:e0007023. [PMID: 37366641 PMCID: PMC10449527 DOI: 10.1128/msphere.00070-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic lupus erythematosus (SLE), characterized by persistent inflammation, is a complex autoimmune disorder that affects all organs, challenging clinical treatment. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Modulating the gut microbiome is proposed as a promising approach for fine-running parts of the immune system, relieving systematic inflammation in multiple diseases. This study demonstrated that the administration of Akkermansia muciniphila and Lactobacillus plantarum contributed to an anti-inflammatory environment by decreasing IL-6 and IL-17 and increasing IL-10 levels in the circulation. The treatment of A. muciniphila and L. plantarum restored the intestinal barrier integrity to a different extent. In addition, both strains reduced the deposit of IgG in the kidney and improved renal function significantly. Further studies revealed distinct remodeling roles of A. muciniphila and L. plantarum administration on the gut microbiome. This work demonstrated essential mechanisms of how A. muciniphila and L. plantarum remodel gut microbiota and regulate the immune responses in the SLE mice model. IMPORTANCE Several pieces of research have demonstrated that certain probiotic strains contribute to regulating excessive inflammation and restoring tolerances in the SLE animal model. More animal trials combined with clinical studies are urgently needed to further elucidate the mechanisms for the effect of specific probiotic bacteria in preventing SLE symptoms and developing novel therapeutic targets. In this study, we explored the role of A. muciniphila and L. plantarum in ameliorating the SLE disease activity. Both A. muciniphila and L. plantarum treatment relieved the systemic inflammation and improved renal function in the SLE mouse model. We demonstrated that A. muciniphila and L. plantarum contributed to an anti-inflammatory environment by regulating cytokine levels in the circulation, restoring the intestinal barrier integrity, and remodeling the gut microbiome, however, to a different extent.
Collapse
Affiliation(s)
- Mengchen Guo
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kun Chen
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Xu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- The Laboratory Center for Basic Medical Sciences of Nanjing Medical University, Nanjing, China
| |
Collapse
|