1
|
Lu X, Xie Y, Ding G, Sun W, Ye H. RBM24 Suppresses the Tumorigenesis of Glioblastoma by Stabilizing LATS1 mRNA. Biochem Genet 2025; 63:634-653. [PMID: 38499965 DOI: 10.1007/s10528-024-10715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
The ribose nucleic acid (RNA)-binding motif protein 24 (RBM24) has been recognized as a critical regulatory protein in various types of tumors. However, its specific role in glioblastoma (GBM) has not been thoroughly investigated. The objective of this study is to uncover the role of RBM24 in GBM and understand the underlying mechanism. The expression of RBM24 in GBM was initially analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA). Subsequently, the RBM24 expression levels in clinical samples of GBM were examined, and the survival curves of GBM patients were plotted based on high- and low-expression levels of RBM24 using Kaplan-Meier (KM) plotter. In addition, RBM24 knockdown cell lines and overexpression vectors were created to assess the effects on proliferation, apoptosis, and invasion abilities. Finally, the binding level of RBM24 protein to LATS1 messenger RNA (mRNA) was determined by RNA immunoprecipitation (RIP) assay, and the expression levels of RBM24 and LATS1 were measured through quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR) and Western blot (WB). Our data revealed a significant decrease in RBM24 mRNA and protein levels in GBM patients, indicating that those with low RBM24 expression had a worse prognosis. Overexpression of RBM24 led to inhibited cell proliferation, reduced invasion, and increased apoptosis in LN229 and U87 cells. In addition, knocking down LATS1 partially reversed the effects of RBM24 on cell proliferation, invasion, and apoptosis in GBM cells. In vivo xenograft model further demonstrated that RBM24 overexpression reduced the growth of subcutaneous tumors in nude mice, accompanied by a decrease in Ki-67 expression and an increase in apoptotic events in tumor tissues. There was also correlation between RBM24 and LATS1 protein expression in the xenograft tumors. RBM24 functions to stabilize LATS1 mRNA, thereby inhibiting the proliferation, suppressing invasion, and promoting apoptosis in GBM cells.
Collapse
Affiliation(s)
- Xuewen Lu
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Yong Xie
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Guolin Ding
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Wei Sun
- Department of Neurosurgery, Qujing Hospital of Traditional Chinese Medicine, No.771, Yingxia Road, Qilin District, Qujing, Yunnan, China
| | - Hao Ye
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China.
| |
Collapse
|
2
|
Liu J, Peng J, Jiang J, Liu Y. Clinical immunotherapy in glioma: current concepts, challenges, and future perspectives. Front Immunol 2024; 15:1476436. [PMID: 39555054 PMCID: PMC11564147 DOI: 10.3389/fimmu.2024.1476436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma is one of the common tumors in the central nervous system, and its treatment methods (surgery, radiotherapy, and chemotherapy) lack specificity and have a poor prognosis. With the development of immunology, cell biology, and genomics, tumor immunotherapy has ushered in a new era of tumor therapy, achieving significant results in other invasive cancers such as advanced melanoma and advanced non-small cell lung cancer. Currently, the clinical trials of immunotherapy in glioma are also progressing rapidly. Here, this review summarizes promising immunotherapy methods in recent years, reviews the current status of clinical trials, and discusses the challenges and prospects of glioma immunotherapy.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Jingjian Peng
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Jian Jiang
- Department of Neurosurgery, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Li X, Xiao X, Wang Y, Gu G, Li T, Wang Y, Li C, Zhang P, Ji N, Zhang Y, Zhang L. Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers (Basel) 2024; 16:228. [PMID: 38201655 PMCID: PMC10777982 DOI: 10.3390/cancers16010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate IL13Ra2 expression in brainstem glioma (BSG) and its correlation with key markers, functions, and prognostic implications, evaluating its therapeutic potential. A total of 80 tumor samples from BSG patients were analyzed. Multiplex immunofluorescence was used to examine six markers-IL13Ra2, H3.3K27M, CD133, Ki67, HLA-1, and CD4-establishing relationships between IL13Ra2 and these markers. Survival analysis, employing Kaplan-Meier and Cox proportional hazard regression models, encompassed 66 patients with complete follow-up. RNA-Seq data from a previously published study involving 98 patients were analyzed using the DESeq2 library to determine differential gene expression between groups. Gene Ontology (GO) enrichment and single-sample gene set enrichment analysis (ssGSEA) via the clusterProfiler library were used to delineate the gene functions of differentially expressed genes (DEGs). Nearly all the BSG patients displayed varying IL13Ra2 expression, with 45.0% (36/80) exhibiting over a 20% increase. Elevated IL13Ra2 levels were notably observed in pontine gliomas, diffuse intrinsic pontine gliomas (DIPGs), H3F3A-mutant gliomas, and WHO IV gliomas. IL13Ra2 expression was strongly correlated with H3.3K27M mutant protein, Ki67, and CD133. Patients with IL13Ra2 expression >20% showed shorter overall survival compared to those with ≤20% IL13Ra2 expression. The Cox proportional hazard regression model identified H3F3A mutations, rather than IL13Ra2 expression, as an independent prognostic factor. Analysis of RNA-Seq data from our prior cohort confirmed IL13Ra2's correlation with H3.3, CD133, and Ki67 levels. Widespread IL13Ra2 expression in BSG, particularly elevated in the H3F3A mutant group, was strongly correlated with H3F3A mutations, increased proliferation, and heightened tumor stemness. IL13Ra2 represents a promising therapeutic target for BSGs, potentially benefiting patients with H3K27M mutations, DIPGs, WHO Grade IV, and pontine location-specific BSGs, particularly those with H3K27M mutations.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
4
|
Liang T, Song Y, Gu L, Wang Y, Ma W. Insight into the Progress in CAR-T Cell Therapy and Combination with Other Therapies for Glioblastoma. Int J Gen Med 2023; 16:4121-4141. [PMID: 37720174 PMCID: PMC10503554 DOI: 10.2147/ijgm.s418837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer in adults. It is always resistant to existing treatments, including surgical resection, postoperative radiotherapy, and chemotherapy, which leads to a dismal prognosis and a high relapse rate. Therefore, novel curative therapies are urgently needed for GBM. Chimeric antigen receptor T (CAR-T) cell therapy has significantly improved life expectancy for hematological malignancies patients, and thus it increases the interest in applying CAR-T cell therapy for solid tumors. In the recently published research, it is indicated that there are numerous obstacles to achieve clinical benefits for solid tumors, especially for GBM, because of GBM anatomical characteristics (the blood-brain barrier and suppressive tumor microenvironment) and the tumor heterogeneity. CAR-T cells are difficult to penetrate blood-brain barrier, and immunosuppressive tumor microenvironment (TME), which induces CAR-T cell exhaustion, impairs CAR-T cell therapy response. Moreover, under the pressure of CAR-T cell therapy, the tumor heterogeneity and tumor plasticity drive tumor evolution and therapy resistance, such as antigen escape. Nonetheless, scientists strive for strategies to overcome these hurdles, including novel CAR-T cell designs and regional delivery. For instance, the structure of multi-antigen-targeted CAR-T cells can enrich CAR-T accumulation in tumor TME and eliminate abundant tumor cells to avoid tumor antigen heterogeneity. Additionally, paired with an immune modifier and one or more stimulating domains, different generation of innovations in the structure and manufacturing of CAR-T cells have improved efficacy and persistence. While single CAR-T cell therapy receives limited clinical survival benefit. Compared with single CAR-T cell therapy, the combination therapies have supplemented the treatment paradigm. Combinatorial treatment methods consolidate the CAR-T cells efficacy by regulating the tumor microenvironment, optimizing the CAR structure, targeting the CAR-T cells to the tumor cells, reversing the tumor-immune escape mechanisms, and represent a promising avenue against GBM, based on multiple impressive research. Moreover, exciting results are also reported to be realized through combining effective therapies with CAR-T cells in preclinical and clinical trials samples, have aroused inspiration to explore the antitumor function of combination therapies. In summary, this study aims to summarize the limitation of CAR-T cell therapies and introduces novel strategies to enhance CAR-T cell function as well as prospect the potential of the therapeutic combination.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixuan Song
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Zheng C, Mao C, Tang K, Shu H. VSIG4 Silencing Inhibits Glioblastoma Growth by Regulating the JAK2/STAT3 Pathway. Neuropsychiatr Dis Treat 2023; 19:1397-1408. [PMID: 37292180 PMCID: PMC10246575 DOI: 10.2147/ndt.s406782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant primary brain tumour in adults. VSIG4 has been identified to be associated with GBM. We aimed to determine the downstream regulatory mechanisms of VSIG4 in GBM. Methods Differential expression of VSIG4 was analysed using GEPIA. The expression of VSIG4 was assessed by RT-qPCR and its downstream genes were screened by transcriptome sequencing. The expression of pyroptosis-related proteins and the JAK2/STAT3 pathway was measured by Western blotting. GBM cell viability, migration, and invasion were detected using CCK-8, scratch, and Transwell assays. The levels of pyroptosis-related factors were measured using ELISA. The effect of VSIG4 on GBM tumour growth in vivo was explored by constructing a xenograft tumour model. Results VSIG4 expression was upregulated in GBM. Functionally, silencing of VSIG4 inhibited proliferation, invasion, and migration of U251 and LN229 cells, and promoted pyroptosis. Mechanically, transcriptome sequencing revealed that the JAK2/STAT3 pathway might be a downstream regulator of VSIG4. Further studies proved that silencing of VSIG4 enhanced the expression of p-JAK2 and p-STAT3, and the JAK2/STAT3 pathway inhibitor relieved the suppression of VSIG4 silencing on GBM cell viability, invasion, and migration. Furthermore, in vivo experiments further validated that knockdown of VSIG4 inhibited the growth of GBM tumors. Conclusion In GBM, silencing VSIG4 promoted pyroptosis and inhibited tumor progression by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Congying Zheng
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Chengliang Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Kai Tang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Hang Shu
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|
6
|
Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel) 2023; 15:cancers15041194. [PMID: 36831536 PMCID: PMC9954396 DOI: 10.3390/cancers15041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synergistic activity between maintenance temozolomide (TMZm) and individualized multimodal immunotherapy (IMI) during/after first-line treatment has been suggested to improve the overall survival (OS) of adults with IDH1 wild-type MGMT promoter-unmethylated (unmeth) GBM. We expand the data and include the OS of MGMT promoter-methylated (meth) adults with GBM. Unmeth (10 f, 18 m) and meth (12 f, 10 m) patients treated between 27 May 2015 and 1 January 2022 were analyzed retrospectively. There were no differences in age (median: 48 y) or Karnofsky performance index (median: 80). The IMI consisted of 5-day immunogenic cell death (ICD) therapies during TMZm: Newcastle disease virus (NDV) bolus injections and sessions of modulated electrohyperthermia (mEHT); subsequent active specific immunotherapy: dendritic cell (DC) vaccines plus modulatory immunotherapy; and maintenance ICD therapy. There were no differences in the number of vaccines (median: 2), total number of DCs (median: 25.6 × 106), number of NDV injections (median: 31), and number of mEHT sessions (median: 28) between both groups. The median OS of 28 unmeth patients was 22 m (2y-OS: 39%), confirming previous results. OS of 22 meth patients was significantly better (p = 0.0414) with 38 m (2y-OS: 81%). There were no major treatment-related adverse reactions. The addition of IMI during/after standard of care should be prospectively explored.
Collapse
|
7
|
Wu C, Shen Y, Shi L, Zhang J, Guo T, Zhou L, Wang W, Zhang X, Yu R, Liu X. UBA1 inhibition contributes radiosensitization of glioblastoma cells via blocking DNA damage repair. Front Pharmacol 2023; 14:1073929. [PMID: 36959858 PMCID: PMC10027716 DOI: 10.3389/fphar.2023.1073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.
Collapse
Affiliation(s)
- Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of general surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| |
Collapse
|