1
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Jiang L, Zhang L, Xia J, Cheng L, Chen G, Wang J, Raghavan V. Probiotics supplementation during pregnancy or infancy on multiple food allergies and gut microbiota: a systematic review and meta-analysis. Nutr Rev 2025; 83:e25-e41. [PMID: 38502006 PMCID: PMC11723154 DOI: 10.1093/nutrit/nuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
CONTEXT Probiotics show promise in preventing and managing food allergies, but the impact of supplementation during pregnancy or infancy on children's allergies and gut microbiota remains unclear. OBJECTIVE This study aimed to assess the effects of maternal or infant probiotic supplementation on food allergy risk and explore the role of gut microbiota. DATA SOURCES A systematic search of databases (PubMed, Cochrane Library, Embase, and Medline) identified 37 relevant studies until May 20, 2023. DATA EXTRACTION Two independent reviewers extracted data, including probiotics intervention details, gut microbiota analysis, and food allergy information. DATA ANALYSIS Probiotics supplementation during pregnancy and infancy reduced the risk of total food allergy (relative risk [RR], 0.79; 95% CI, 0.63-0.99), cow-milk allergy (RR, 0.51; 95% CI, 0.29-0.88), and egg allergy (RR, 0.57; 95% CI, 0.39-0.84). Infancy-only supplementation lowered cow-milk allergy risk (RR, 0.69; 95% CI, 0.49-0.96), while pregnancy-only had no discernible effect. Benefits were observed with over 2 probiotic species, and a daily increase of 1.8 × 109 colony-forming units during pregnancy and infancy correlated with a 4% reduction in food allergy risk. Children with food allergies had distinct gut microbiota profiles, evolving with age. CONCLUSIONS Probiotics supplementation during pregnancy and infancy reduces food allergy risk and correlates with age-related changes in gut microbial composition in children. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023425988.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
3
|
Hu YC, Huang TC, Hsieh BS, Huang LW, Lin JS, Hsu HY, Lee CC, Chang KL. Heat-Killed Lactobacillus delbrueckii subsp. lactis 557 Extracts Protect Chondrocytes from Osteoarthritis Damage by Reducing Inflammation: An In Vitro Study. Nutrients 2024; 16:4417. [PMID: 39771038 PMCID: PMC11676954 DOI: 10.3390/nu16244417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed Lactobacillus delbrueckii subsp. lactis 557 (LDL557) could significantly decrease OA progression. METHODS Accordingly, we designed an in vitro cell culture study aimed at investigating the effects of heat-killed LDL557 extracts on chondrocytes using SW1353 cells (a human chondrosarcoma cell line) challenged with 5 μM MIA to mimic OA conditions. RESULTS The results showed that the 10 μg/mL LDL557 extracts protected SW1353 cells from MIA-induced death and reduced extracellular matrix (ECM) loss, as evaluated by toluidine blue O staining and extracellular matrix component synthesis with RT-qPCR measurement. This was achieved by decreasing the expression of MIA-induced pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, while slightly increasing the MIA-suppressed expression of the anti-inflammatory cytokine IL-10, which were evidenced by RT-qPCR analysis. Moreover, the RT-qPCR evaluation also indicated that the LDL557 extracts slightly reduced the expression of COX-2 compared with the control, while it did not reduce the MIA-increased expression of microsomal prostaglandin E synthase-1 (mPGES-1). In addition, the LDL557 extracts influenced neither the matrix-degrading protease expressions measured via RT-qPCR nor the oxidative stress measured via fluorescence flow cytometry in the cells with or without the MIA challenge. CONCLUSIONS This study demonstrates that LDL557 extracts may protect chondrocytes from OA damage by reducing inflammation-related factors and thus mitigating cartilage matrix loss, suggesting LDL557 extracts are attractive alternatives for OA applications.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Jin-Seng Lin
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Han-Yin Hsu
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Chia-Chia Lee
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
5
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Karim A. Unveiling the Potential of Probiotics in Osteoarthritis Management. Curr Rheumatol Rep 2024; 27:2. [PMID: 39579259 DOI: 10.1007/s11926-024-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA), a highly prevalent degenerative joint disease, is of increasing concern due to its debilitating nature and negative impact on quality of life. Recent investigations have explored the therapeutic potential of probiotics to alleviate OA. This review summarizes the emerging evidence for the potential role of probiotics in managing OA symptoms and disease progression. The link between gut dysbiosis and chronic inflammation, a key player in OA progression is discussed in this review. RECENT FINDINGS Probiotics may modulate gut microbiota composition, potentially reducing systemic inflammation and alleviating OA symptoms, including joint pain and function. Possible mechanisms through which probiotics may exert these effects, including dampening inflammatory pathways and enhancing intestinal barrier integrity have been highlighted. Promising results from preclinical and clinical studies investigating the specific beneficial effects of specific probiotic strain(s) for OA management have been highlighted. Finally, limitations in current research and future directions, emphasizing the need for well-designed, large-scale clinical trials to definitively establish the therapeutic potential of probiotics in OA treatment have been discussed.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Iron Biology Research Group, Sharjah Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Park YM, Shin DY, Lee HY, Hwang HM, Kim JG, Kim BS, Lee SH, Lee SC, Kim MJ, Yang HJ, Kim MS, Bae JS. Pinus densiflora Root Extract Attenuates Osteoarthritis Progression by Inhibiting Inflammation and Cartilage Degradation in Interleukin-1β and Monosodium Iodoacetate-Induced Osteoarthritis Models. Nutrients 2024; 16:3882. [PMID: 39599668 PMCID: PMC11597245 DOI: 10.3390/nu16223882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in vivo OA models. METHODS/RESULTS In an in vitro OA model, in which SW1353 human chondrosarcoma cells were treated with interleukin (IL)-1β, PDREP treatment significantly reduced the mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 while enhancing collagen type II alpha 1 (Col2a1) mRNA level, and decreased IL-6 and prostaglandin E2 (PGE2) levels. In addition, PDREP inhibited the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), p38, nuclear factor-kappa B (NF-κB), and the expression of inducible nitric oxide synthase (iNOS). In a monosodium iodoacetate (MIA)-induced OA rat model, the administration of PDREP resulted in decreased OA clinical indices, improved weight-bearing indices and gait patterns, reduced histological damage, and lowered serum inflammatory cytokine and MMPs expression. Furthermore, PDREP downregulated the phosphorylation of ERK, JNK, p38, and NF-κB, as well as the expression of iNOS, consistent with the in vitro findings. CONCLUSIONS These results suggest that PDREP exhibits anti-inflammatory and joint-improving effects and has potential as a therapeutic strategy or functional food for the treatment of OA.
Collapse
Affiliation(s)
- Young Mi Park
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| | - Dong Yeop Shin
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Hak Yong Lee
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Hai Min Hwang
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Jae Gon Kim
- INVIVO Co., Ltd., 121, Deahak-ro, Nonsan 32992, Chungnam, Republic of Korea; (Y.M.P.); (D.Y.S.); (H.Y.L.); (H.M.H.); (J.G.K.)
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, 54-3 Deahak-ro, Esan-Eub, Yesan-gun 32439, Chungnam, Republic of Korea;
| | - Sang Ho Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Sang Choon Lee
- Sigolsori Farming Association Corporation, 153, Jangpa-gil, Gui-myeon, Wanju-gun 55363, Jeonbuk, Republic of Korea; (S.H.L.); (S.C.L.)
| | - Min Jung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Hye Jeong Yang
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Myung-Sunny Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo, Wanju-gun 55365, Jeonbuk, Republic of Korea; (M.J.K.); (H.J.Y.); (M.-S.K.)
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
8
|
Li L, Li J, Li JJ, Zhou H, Zhu XW, Zhang PH, Huang B, Zhao WT, Zhao XF, Chen ES. Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Front Cell Dev Biol 2024; 12:1472613. [PMID: 39507422 PMCID: PMC11537998 DOI: 10.3389/fcell.2024.1472613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
Collapse
Affiliation(s)
- Lan Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Jiang Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Zhou
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Wang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ping-Heng Zhang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Huang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Feng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - En-Sheng Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li J, Liang J, Liu Y, Sun W, Sun W. Basal metabolic rate mediates the causal relationship between gut microbiota and osteoarthritis: a two-step bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1371679. [PMID: 39411433 PMCID: PMC11473340 DOI: 10.3389/fmicb.2024.1371679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between gut microbiota and osteoarthritis (OA) occurrence remains unclear. Existing research needs to clearly understand how basal metabolic rate (BMR) regulates this relationship. Therefore, using a two-step bidirectional Mendelian Randomization approach, our study aims to investigate whether BMR levels mediate the causal relationship between gut microbiota and OA. Methods In this study, we examined publicly available summary statistics from Genome-Wide Association Studies (GWAS) to determine the correlation between gut microbiota and OA. The analysis included one primary dataset and two secondary datasets. Initially, a two-step, two-sample, and reverse MR analysis was performed to identify the causal relationship between gut microbiota and OA. Subsequently, a two-step MR analysis revealed that the relationship between microbiota and OA is mediated by BMR. Sensitivity analyses confirmed the robustness of the study results. Results In our analysis of the primary dataset, we discovered a positive correlation between three taxa and the outcome of OA, and eight taxa exhibited a negative correlation with the OA outcome. Through comparisons with the secondary dataset and multiple testing corrections, we found a negative association between the class Actinobacteria (OR=0.992886277, p-value = 0.003) and the likelihood of OA occurrence. Notably, knee osteoarthritis (KOA) and hip osteoarthritis (HOA) had a strong negative correlation (OR = 0.927237553/0.892581219). Our analysis suggests that BMR significantly mediates the causal pathway from Actinobacteria to OA, with a mediated effect of 2.59%. Additionally, BMR mediates 3.98% of the impact in the path from the order Bifidobacteriales and the family Bifidobacteriaceae to OA. Besides these findings, our reverse analysis did not indicate any significant effect of OA on gut microbiota or BMR. Conclusion Our research results indicate that an increase in the abundance of specific gut microbial taxa is associated with a reduced incidence of OA, and BMR levels mediate this causal relationship. Further large-scale randomized controlled trials are necessary to validate the causal impact of gut microbiota on the risk of OA. This study provides new insights into the potential prevention of OA by modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
11
|
Dolatkhah N, Jafari A, Eslamian F, Toopchizadeh V, Saleh P, Hashemian M. Saccharomyces boulardii improves clinical and paraclinical indices in overweight/obese knee osteoarthritis patients: a randomized triple-blind placebo-controlled trial. Eur J Nutr 2024; 63:2291-2305. [PMID: 38761281 DOI: 10.1007/s00394-024-03428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to determine the effect of the probiotic Saccharomyces boulardii (S. boulardii) in patients with knee osteoarthritis (KOA). METHODS In this study, 70 patients with KOA were recruited via outpatient clinics between 2020 and 2021 and randomly assigned to receive probiotics or placebo supplements for 12 weeks. The primary outcome was a change in pain intensity according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score. RESULTS Sixty-three patients completed the trial. A linear mixed analysis of covariance (ANCOVA) model analysis showed that probiotic was better than placebo in decreasing the pain intensity measured by visual analogue scale (VAS) [-2.11 (-2.59, -1.62) in probiotic group and -0.90 (-1.32, -0.48) in placebo group, p = 0.002] and WOMAC pain score [-3.57 (-4.66, -2.49) in probiotic group and -1.43 (-2.33, -0.53) in placebo group, p < 0.001]. The daily intake of acetaminophen for pain management significantly decreased in the probiotic group [-267.18 (-400.47, -133.89) mg, p < 0.001] that was significantly better than placebo (p = 0.006). Probiotic significantly decreased the serum levels of high-sensitivity C-reactive protein (hs-CRP) inflammatory index [-2.72 (-3.24, -2.20) µg/ml] and malondialdehyde (MDA) oxidative stress index [-1.61 (-2.11, -1.11) nmol/ml] compared to the placebo (p = 0.002 and p < 0.001, respectively). Probiotic was better than placebo in increasing the scores of role disorder due to physical health (p = 0.023), pain (p = 0.048) and physical health (p = 0.031). CONCLUSION Probiotic S. boulardii supplementation in patients with KOA significantly improved pain intensity, some dimensions of QoL, and inflammatory and oxidative stress biomarkers with no severe side effects. TRIAL REGISTRY Registered on the Iranian clinical trial website ( http://www.irct.ir : IRCT20161022030424N4) on 2019-09-02.
Collapse
Affiliation(s)
- Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Jafari
- Department pf Physical Medicine and Rehabilitation, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Toopchizadeh
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Saleh
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA
| |
Collapse
|
12
|
Huang LW, Huang TC, Hu YC, Hsieh BS, Lin JS, Hsu HY, Lee CC, Chang KL. The Oral Administration of Lactobacillus delbrueckii subsp. lactis 557 (LDL557) Ameliorates the Progression of Monosodium Iodoacetate-Induced Osteoarthritis. Curr Issues Mol Biol 2024; 46:8969-8980. [PMID: 39194747 DOI: 10.3390/cimb46080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Low-grade body inflammation is a major cause of osteoarthritis (OA), a common joint disease. Gut dysbiosis may lead to systemic inflammation which can be prevented by probiotic administration. The Lactobacillus delbrueckii subsp. lactis 557 (LDL557) has been demonstrated to have beneficial effects for anti-inflammation. This study investigated the effects of LDL557 on OA progress using monosodium iodoacetate (MIA)-induced OA of rats. Live or heat-killed (HK)-LDL557 of a low or high dose was administrated for two weeks before MIA-induced OA, and then continuously administrated for another six weeks. After taking supplements for eight weeks, OA progress was analyzed. Results showed that MIA induced knee joint swelling, chondrocyte damage, and cartilage degradation, and supplementation with a high dose of LDL557 reduced MIA-induced knee joint swelling, chondrocyte damage, and cartilage degradation. Additionally, MIA increased serum levels of the matrix-degrading enzyme MMP-13, while a high dose of HK-LDL557 decreased it for the controls. Simultaneously, bone turnover markers and inflammatory cytokines of serum were assayed, but no significant differences were found except for a TNF-α decrease from a low dose of live LDL557. These results demonstrated that supplementation with high doses of live LDL557 or HK-LDL557 can reduce the progression of MIA-induced OA in rats.
Collapse
Affiliation(s)
- Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Han-Yin Hsu
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung 821011, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
13
|
刘 佳, 缪 长, 徐 健, 余 伟, 陈 继, 唐 好, 刘 爱. [Causal relationship between gut microbiota and pigmented villonodular synovitis: a Mendelian randomization analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1397-1406. [PMID: 39051086 PMCID: PMC11270658 DOI: 10.12122/j.issn.1673-4254.2024.07.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the causal relationship between gut microbiota and pigmented villonodular synovitis using Mendelian randomization analysis. METHODS We conducted a two-sample Mendelian randomization analysis to investigate the causal relationship between 211 gut microbiome taxa and pigmented villonodular synovitis based on GWAS summary data, with inverse variance weighted (IVW) analysis as the primary result and the other methods as supplementary analyses. The reliability of the results was tested using Cochran's Q test, MR-Egger regression, MR-PRESSO method and conditional Mendelian randomization analysis (cML-MA). RESULTS The increased abundance of Barnesiella (OR=3.12, 95% CI: 1.15-8.41, P=0.025) and Rumatococcaceae UCG010 (OR=4.03, 95% CI: 1.19-13.68, P=0.025) may increase the risk of pigmented villous nodular synovitis, and elevated abundance of Lachnospiraceae (OR=0.33, 95% CI: 0.12-0.91, P=0.032), Alistipes (OR=0.16, 95% CI: 0.05-0.53, P=0.003), Blautia (OR=0.20, 95% CI: 0.06-0.61, P=0.005), and Lachnospiraceae FCS020 group (OR=0.38, 95% CI: 0.15-0.94, P=0.036) and Ruminococcaceae UCG014 (OR=0.36, 95% CI: 0.14-0.94, P=0.037) were all associated with a reduced risk of pigmented villonodular synovitis, which were supported by the results of sensitivity analyses. Reverse Mendelian randomization analysis did not reveal any inverse causal association. CONCLUSION Increased abundance of specific intestinal microorganisms is associated with increased or decreased risks of developing hyperpigmented villonodular synovitis, and gut microbiota plays an important role in the pathogenesis of this disease.
Collapse
|
14
|
Wu Y, Li X, Meng H, Wang Y, Sheng P, Dong Y, Yang J, Chen B, Wang X. Dietary fiber may benefit chondrocyte activity maintenance. Front Cell Infect Microbiol 2024; 14:1401963. [PMID: 38803575 PMCID: PMC11129558 DOI: 10.3389/fcimb.2024.1401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
The understanding of the link between the gut-bone axis is growing yearly, but the mechanisms involved are not yet clear. Our study analyzed the role of Sestrin2 (SESN2)pathway in the gut-bone axis. We established an osteoarthritis (OA) model in Sprague-Dawley (SD) rats using the anterior cruciate ligament transection (ACLT) procedure, followed by a dietary intervention with varying levels of dietary fiber content for 8 weeks. By 16S rRNA sequencing of the gut microbiota, we found that high dietary fiber (HDF) intake could significantly increase the Bacillota-dominant gut microbiota. Meanwhile, enzyme linked immunosorbent assay (ELISA) and histological analysis showed that intervention with HDF could reduce the degree of bone and joint lesions and inflammation. We hypothesize that HDF increased the dominant flora of Bacillota, up-regulated the expression of SESN2 in knee joint, and reduced gut permeability, thereby reducing systemic inflammatory response and the degree of bone and joint lesions. Therefore, the present study confirms that changes in gut microbiota induced by increased dietary fiber intake delayed the onset of OA by promoting up-regulation of SESN2 expression at the knee joint to maintain chondrocyte activity and reduce synovial inflammation.
Collapse
Affiliation(s)
- Ying Wu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - XiangJie Li
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Meng
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Wang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Sheng
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - YongNing Dong
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ju Yang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - BingQian Chen
- Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, First Peoples’ Hospital of Changshu City, Changshu, Jiangsu, China
| | - XueSong Wang
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Deng Z, Yang C, Xiang T, Dou C, Sun D, Dai Q, Ling Z, Xu J, Luo F, Chen Y. Gold nanoparticles exhibit anti-osteoarthritic effects via modulating interaction of the "microbiota-gut-joint" axis. J Nanobiotechnology 2024; 22:157. [PMID: 38589904 PMCID: PMC11000357 DOI: 10.1186/s12951-024-02447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can cause severe pain, motor dysfunction, and even disability. A growing body of research indicates that gut microbiota and their associated metabolites are key players in maintaining bone health and in the progression of OA. Short-chain fatty acids (SCFAs) are a series of active metabolites that widely participate in bone homeostasis. Gold nanoparticles (GNPs) with outstanding anti-bacterial and anti-inflammatory properties, have been demonstrated to ameliorate excessive bone loss during the progression of osteoporosis (OP) and rheumatoid arthritis (RA). However, the protective effects of GNPs on OA progression are not clear. Here, we observed that GNPs significantly alleviated anterior cruciate ligament transection (ACLT)-induced OA in a gut microbiota-dependent manner. 16S rDNA gene sequencing showed that GNPs changed gut microbial diversity and structure, which manifested as an increase in the abundance of Akkermansia and Lactobacillus. Additionally, GNPs increased levels of SCFAs (such as butyric acid), which could have improved bone destruction by reducing the inflammatory response. Notably, GNPs modulated the dynamic balance of M1/M2 macrophages, and increased the serum levels of anti-inflammatory cytokines such as IL-10. To sum up, our study indicated that GNPs exhibited anti-osteoarthritis effects via modulating the interaction of "microbiota-gut-joint" axis, which might provide promising therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Department of Orthopedics, Chinese PLA 76th Army Corps Hospital, Xining, People's Republic of China.
| |
Collapse
|
16
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|
17
|
Hiltzik DM, Goodwin AM, Kurapaty SS, Inglis JE, Pagadala MS, Edelstein AI, Hsu WK. The Role of the Gut Microbiome in Orthopedic Surgery-a Narrative Review. Curr Rev Musculoskelet Med 2024; 17:37-46. [PMID: 38133764 PMCID: PMC10805751 DOI: 10.1007/s12178-023-09878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome has received increasing attention in recent years. New literature has revealed significant associations between gut health and various orthopedic disorders, as well as the potential for interventions targeting the gut microbiome to prevent disease and improve musculoskeletal outcomes. We provide a broad overview of available literature discussing the links between the gut microbiome and pathogenesis and management of orthopedic disorders. RECENT FINDINGS Human and animal models have characterized the associations between gut microbiome dysregulation and diseases of the joints, spine, nerves, and muscle, as well as the physiology of bone formation and fracture healing. Interventions such as probiotic supplementation and fecal transplant have shown some promise in ameliorating the symptoms or slowing the progression of these disorders. We aim to aid discussions regarding optimization of patient outcomes in the field of orthopedic surgery by providing a narrative review of the available evidence-based literature involving gut microbiome dysregulation and its effects on orthopedic disease. In general, we believe that the gut microbiome is a viable target for interventions that can augment current management models and lead to significantly improved outcomes for patients under the care of orthopedic surgeons.
Collapse
Affiliation(s)
- David M Hiltzik
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Alyssa M Goodwin
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Steven S Kurapaty
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
- Department of Orthopaedic Surgery, Howard University, Washington, DC, USA
| | - Jacqueline E Inglis
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Manasa S Pagadala
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA.
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| |
Collapse
|
18
|
Basak S, Hridayanka KSN, Duttaroy AK. Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis. Front Immunol 2024; 14:1323233. [PMID: 38235147 PMCID: PMC10792057 DOI: 10.3389/fimmu.2023.1323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Marchese L, Contartese D, Giavaresi G, Di Sarno L, Salamanna F. The Complex Interplay between the Gut Microbiome and Osteoarthritis: A Systematic Review on Potential Correlations and Therapeutic Approaches. Int J Mol Sci 2023; 25:143. [PMID: 38203314 PMCID: PMC10778637 DOI: 10.3390/ijms25010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this review is to systematically analyze the potential correlation between gut microbiota and osteoarthritis (OA) as well as to evaluate the feasibility of microbiota-targeted therapies for treating OA. Studies conducted from October 2013 to October 2023 were identified via a search on electronic databases such as PubMed, Web of Science, and Scopus, following established PRISMA statement standards. Two reviewers independently screened, assessed, and extracted relevant data, and then they graded the studies using the ROBINS I tool for non-randomized interventions studies and SYRCLE's risk-of-bias tool for animal studies. A search through 370 studies yielded 38 studies (24 preclinical and 14 clinical) that were included. In vivo research has predominantly concentrated on modifying the gut microbiota microenvironment, using dietary supplements, probiotics, and prebiotics to modify the OA status. Lactobacilli are the most thoroughly examined with Lactobacillus acidophilus found to effectively reduce cartilage damage, inflammatory factors, and pain. Additionally, Lactobacillus M5 inhibits the development of OA by preventing high-fat diet (HFD)-induced obesity and protecting cartilage from damage. Although there are limited clinical studies, certain compositions of intestinal microbiota may be associated with onset and progression of OA, while others are linked to pain reduction in OA patients. Based on preclinical studies, there is evidence to suggest that the gut microbiota could play a significant role in the development and progression of OA. However, due to the scarcity of clinical studies, the exact mechanism linking the gut microbiota and OA remains unclear. Further research is necessary to evaluate specific gut microbiota compositions, potential pathogens, and their corresponding signaling pathways that contribute to the onset and progression of OA. This will help to validate the potential of targeting gut microbiota for treating OA patients.
Collapse
Affiliation(s)
| | | | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (D.C.); (L.D.S.); (F.S.)
| | | | | |
Collapse
|
20
|
Jiang T, Liu K, Li J, Zhang Y, Zhang W, Doherty M, Yang Z, Yang T, Yang Y, Weng Q, Luo X, Xie H, Li C, Ai K, Wei J, Lei G, Zeng C. Gut-joint axis in knee synovitis: gut fungal dysbiosis and altered fungi-bacteria correlation network identified in a community-based study. RMD Open 2023; 9:e003529. [PMID: 38114197 DOI: 10.1136/rmdopen-2023-003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES Knee synovitis is a highly prevalent and potentially curable condition for knee pain; however, its pathogenesis remains unclear. We sought to assess the associations of the gut fungal microbiota and the fungi-bacteria correlation network with knee synovitis. METHODS Participants were derived from a community-based cross-sectional study. We performed an ultrasound examination of both knees. A knee was defined as having synovitis if its synovium was ≥4 mm and/or Power Doppler (PD) signal was within the knee synovium area (PD synovitis). We collected faecal specimens from each participant and assessed gut fungal and bacterial microbiota using internal transcribed spacer 2 and shotgun metagenomic sequencing. We examined the relation of α-diversity, β-diversity, the relative abundance of taxa and the interkingdom correlations to knee synovitis. RESULTS Among 977 participants (mean age: 63.2 years; women: 58.8%), 191 (19.5%) had knee synovitis. β-diversity of the gut fungal microbiota, but not α-diversity, was significantly associated with prevalent knee synovitis. The fungal genus Schizophyllum was inversely correlated with the prevalence and activity (ie, control, synovitis without PD signal and PD synovitis) of knee synovitis. Compared with those without synovitis, the fungi-bacteria correlation network in patients with knee synovitis was smaller (nodes: 93 vs 153; edges: 107 vs 244), and the average number of neighbours was fewer (2.3 vs 3.2). CONCLUSION Alterations of gut fungal microbiota and the fungi-bacteria correlation network are associated with knee synovitis. These novel findings may help understand the mechanisms of the gut-joint axis in knee synovitis and suggest potential targets for future treatment.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Department of Ultrasonography, Xiangya Hospital Central South University, Changsha, China
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Ke Liu
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- The Mongan Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Weiya Zhang
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Michael Doherty
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Tuo Yang
- Academic Rheumatology, University of Nottingham School of Medicine, Nottingham, UK
- Pain Centre Versus Arthritis, Nottingham, UK
- Health Management Center, Xiangya Hospital Central South University, Changsha, China
| | - Yuanheng Yang
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
| | - Qianlin Weng
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Hui Xie
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Kelong Ai
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
21
|
Rahman SO, Bariguian F, Mobasheri A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr Rheumatol Rep 2023; 25:307-326. [PMID: 37656392 PMCID: PMC10754743 DOI: 10.1007/s11926-023-01108-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This narrative review article comprehensively explains the pathophysiology of osteoarthritis (OA) pain perception, how the gut microbiota is correlated with it, possible molecular pathways involved in probiotics-mediated OA pain reduction, limitations in the current research approaches, and future perspectives. RECENT FINDINGS The initiation and progression of OA, including the development of chronic pain, is intricately associated with activation of the innate immune system and subsequent inflammatory responses. Trauma, lifestyle (e.g., obesity and metabolic disease), and chronic antibiotic treatment can disrupt commensal homeostasis of the human microbiome, thereby affecting intestinal integrity and promoting leakage of bacterial endotoxins and metabolites such as lipopolysaccharides (LPS) into circulation. Increased level of LPS is associated with knee osteophyte severity and joint pain. Both preclinical and clinical studies strongly suggest that probiotics may benefit patients with OA pain through positive gut microbiota modulation and attenuating low-grade inflammation via multiple pathways. Patent data also suggests increased interest in the development of new innovations that involve probiotic use for reducing OA and joint pain. Recent data suggest that probiotics are attracting more and more attention for OA pain management. The advancement of knowledge in this area may pave the way for developing different probiotic strains that can be used to support joint health, improve treatment outcomes in OA, and reduce the huge impact of the disease on healthcare systems worldwide.
Collapse
Affiliation(s)
| | - Frédérique Bariguian
- Haleon (Formerly GSK Consumer Healthcare), Route de L'Etraz 2, Case Postale 1279, 1260, Nyon 1, Switzerland.
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014, Oulu, FI, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium.
| |
Collapse
|
22
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
23
|
Wang D, Fang Y, Lin L, Long W, Wang L, Yu L, Deng H, Wang D. Upregulating miR-181b promotes ferroptosis in osteoarthritic chondrocytes by inhibiting SLC7A11. BMC Musculoskelet Disord 2023; 24:862. [PMID: 37932746 PMCID: PMC10629093 DOI: 10.1186/s12891-023-07003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease with a complex pathology. This study aimed to investigate the correlation between the aberrant upregulation of miR-181b and ferroptosis in chondrocytes during the progression of OA. METHODS An OA cell model was constructed with erastin. Ferrostatin-1 (Fer), bioinformatics, and dual-luciferase activity reports were used to investigate the effect of miR-181b on OA. Finally, a rat model of OA was induced by monosodium iodoacetate to verify that miR-181b inhibits SLC7A11 gene expression and increases ferroptosis. RESULTS The results showed that Fer could effectively reverse the erastin-induced inhibition of human chondrocyte viability, increase the level of collagenous proteins in human chondrocytes, and inhibit oxidative stress and ferroptosis. MiR-181b is abnormally elevated in OA cell models. Transfection of a miR-181b inhibitor could increase the expression levels of the ferroptosis-related proteins solute carrier family 7 members 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), thereby inhibiting the occurrence of ferroptosis in chondrocytes. In addition, hsa-miR-181b-5p and SLC7A11 have a targeted regulatory effect. Transfection of SLC7A11 siRNA effectively abrogated the increase in chondrocyte viability induced by the miR-181 inhibitor and increased ferroptosis. Finally, miR-181b was shown to exacerbate OA disease progression by inhibiting SLC7A11 gene expression and increasing ferroptosis in a rat OA model. CONCLUSIONS Elevating miR-181b may mediate chondrocyte ferroptosis by targeting SLC7A11 in OA.
Collapse
Affiliation(s)
- Dexin Wang
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Yu Fang
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Liang Lin
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Wensuo Long
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Lei Wang
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Liwei Yu
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Huaiming Deng
- Department of Orthopaedics, Haishu Branch, Ningbo First Hospital, Ningbo, 315153, China
| | - Dan Wang
- Department of Pharmacology, Medical College of Dalian University, Dalian, 116622, China.
| |
Collapse
|
24
|
Biţă CE, Scorei IR, Vreju AF, Muşetescu AE, Mogoşanu GD, Biţă A, Dinescu VC, Dinescu ŞC, Criveanu C, Bărbulescu AL, Florescu A, Ciurea PL. Microbiota-Accessible Boron-Containing Compounds in Complex Regional Pain Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1965. [PMID: 38004014 PMCID: PMC10673453 DOI: 10.3390/medicina59111965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The microbiota-gut-brain axis has garnered increasing attention in recent years for its role in various health conditions, including neuroinflammatory disorders like complex regional pain syndrome (CRPS). CRPS is a debilitating condition characterized by chronic neuropathic pain, and its etiology and pathophysiology remain elusive. Emerging research suggests that alterations in the gut microbiota composition and function could play a significant role in CRPS development and progression. Our paper explores the implications of microbiota in CRPS and the potential therapeutic role of boron (B). Studies have demonstrated that individuals with CRPS often exhibit dysbiosis, with imbalances in beneficial and pathogenic gut bacteria. Dysbiosis can lead to increased gut permeability and systemic inflammation, contributing to the chronic pain experienced in CRPS. B, an essential trace element, has shown promise in modulating the gut microbiome positively and exerting anti-inflammatory effects. Recent preclinical and clinical studies suggest that B supplementation may alleviate neuropathic pain and improve CRPS symptoms by restoring microbiota balance and reducing inflammation. Our review highlights the complex interplay between microbiota, inflammation, and neuropathic pain in CRPS and underscores the potential of B as a novel therapeutic approach to target the microbiota-gut-brain axis, offering hope for improved management of this challenging condition.
Collapse
Affiliation(s)
- Cristina Elena Biţă
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
| | - Ananu Florentin Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Anca Emanuela Muşetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ştefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Cristina Criveanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Andreea Lili Bărbulescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Alesandra Florescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| |
Collapse
|
25
|
Jiménez-Muro M, Soriano-Romaní L, Mora G, Ricciardelli D, Nieto JA. The microbiota-metabolic syndrome axis as a promoter of metabolic osteoarthritis. Life Sci 2023; 329:121944. [PMID: 37453577 DOI: 10.1016/j.lfs.2023.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The relation between obesity and osteoarthritis (OA) development has been traditionally explained as consequence of the excessive joint effort derived of overweight. However, in the last two decades a metabolic OA has been suggested through diverse molecular mechanism implying metabolic syndrome, although more investigation must be conducted to elucidate it. Metabolic syndrome is responsible of the release of diverse inflammatory cytokines, specially the increased adipokine in obesity, causing a chronic low-grade inflammatory status that alters the joint homeostasis. In this scenario, the microbiota dysbiosis contribute by worsening the low-grade chronic inflammation or causing metabolic disorders mediated by endotoxemia generated by an increased lipopolysaccharides intake. This results in joint inflammation and cartilage degradation, which contributes to the development of OA. Also, the insulin resistance provoked by type 2 Diabetes contributes to the OA development. When intake patterns are considered, some coincidences can be pointed between the food patterns associated to the metabolic syndrome and the food patterns associated to OA development. Therefore, these coincidences support the idea of a molecular mechanism of the OA development caused by the molecular mechanism generated under the metabolic syndrome status. This review points the relation between metabolic syndrome and OA, showing the connected molecular mechanisms between both pathologies as well as the shared dietary patterns that promote or prevent both pathologies.
Collapse
Affiliation(s)
- Marta Jiménez-Muro
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Laura Soriano-Romaní
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain
| | - Gonzalo Mora
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Diego Ricciardelli
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Juan Antonio Nieto
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain.
| |
Collapse
|
26
|
Zhu R, Wang Y, Ouyang Z, Hao W, Zhou F, Lin Y, Cheng Y, Zhou R, Hu W. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol 2023; 215:115707. [PMID: 37506921 DOI: 10.1016/j.bcp.2023.115707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
In vivo articular cartilage degeneration is an essential hallmark of osteoarthritis (OA), involving chondrocyte senescence, extracellular matrix degradation, chondrocyte death, cartilage loss, and bone erosion. Among them, chondrocyte death is one of the major factors leading to cartilage degeneration. Many studies have reported that various cell death modes, including apoptosis, ferroptosis, and autophagy, play a key role in OA chondrocyte death. Currently, there is insufficient understanding of OA pathogenesis, and there remains a lack of treatment methods to prevent OA and inhibit its progression. Studies suggest that OA prevention and treatment are mainly directed to arrest premature or excessive chondrocyte death. In this review, we a) discuss the forms of death of chondrocytes and the associations between them, b) summarize the critical factors in chondrocyte death, c) discuss the vital role of chondrocyte death in OA, d) and, explore new approaches for targeting the regulation of chondrocyte death in OA treatment.
Collapse
Affiliation(s)
- Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fuli Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
27
|
Wang H, Wang W, Wang J, Zhang L, Luo Y, Tang X. MicroRNA-15a/β1,4-GalT-I axis contributes to cartilage degeneration via NF-κB signaling in osteoarthritis. Clinics (Sao Paulo) 2023; 78:100254. [PMID: 37478628 PMCID: PMC10387577 DOI: 10.1016/j.clinsp.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVE Osteoarthritis is a condition characterized by articular cartilage degradation. The increased expression of β1,4-Galactosyltransferase-I (β1,4-GalT-I) in the articular cartilage of osteoarthritis patients was related to an inflammatory response. The aim of this study was to elucidate the role of β1,4-GalT-I in osteoarthritis. This study aimed to determine the function of 1,4-GalT-I in osteoarthritis. METHODS The osteoarthritis mouse model with the destabilization of the medial meniscus was established by microsurgical technique. Pathological changes in articular cartilage were observed by hematoxylin and eosin staining and safranin O-fast green staining. Quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assays were used to observe mRNA and protein expression, respectively. RNA interactions were verified by a luciferase reporter assay. SA-β-Gal staining was used to assess chondrocyte senescence. Immunofluorescence staining was conducted to observe the localization of Nuclear Factor-kappaB (NF-κB). RESULTS β1,4-GalT-I and microRNA-15a (miR-15a) show high and low expression in the articular cartilage of osteoarthritis, respectively. MiR-15a inhibits the mRNA translation of β1,4-GalT-I. β1,4-GalT-I promotes extracellular matrix degradation, senescence, and NF-κB activation in IL-1β-stimulated chondrocytes, which can be reversed by overexpression of miR-15a. Intra-articular injection of microRNA-15a ameliorates cartilage degeneration by inhibiting β1,4-GalT-I and phosphorylation of NF-κB in vivo. CONCLUSION The authors clarified that the miR-15a/β1,4-GalT-I axis inhibits the phosphorylation of NF-κB thereby inhibiting extracellular matrix degradation and senescence in chondrocytes to alleviate cartilage degeneration in osteoarthritis. MiR-15a and β1,4-GalT-I may serve as potentially effective targets for the future treatment of osteoarthritis.
Collapse
Affiliation(s)
- Hairong Wang
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Weilin Wang
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Jian Wang
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Linsheng Zhang
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Yujie Luo
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Xiaobo Tang
- Department of Orthopedics, Jianhu People's Hospital, Yancheng, Jiangsu, China.
| |
Collapse
|