1
|
Svenvik M, Raffetseder J, Brudin L, Berg G, Hellberg S, Blomberg M, Jenmalm MC, Ernerudh J. Early prediction of spontaneous preterm birth before 34 gestational weeks based on a combination of inflammation-associated plasma proteins. Front Immunol 2024; 15:1415016. [PMID: 39076980 PMCID: PMC11284114 DOI: 10.3389/fimmu.2024.1415016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background In order to identify and possibly offer prophylactic treatment to women at risk for preterm birth (PTB), novel prediction models for PTB are needed. Our objective was to utilize high-sensitive plasma protein profiling to investigate whether early prediction of spontaneous PTB (sPTB) before 34 gestational weeks (gw) was possible in a low-risk population. Methods A case-control study was conducted on 46 women with sPTB before 34 gw and 46 women with normal pregnancies and term deliveries. Prospectively collected plasma sampled at gw 11 (range 7-16) and gw 25 (range 23-30) was analyzed with a high-sensitivity Proximity Extension Assay for levels of 177 inflammation-associated proteins, and statistically processed with multivariate logistic regression analysis. Results In the first trimester, higher levels of hepatocyte growth factor (HGF) were associated with sPTB <34 gw (OR 1.49 (1.03-2.15)). In the second trimester, higher levels of interleukin (IL)-10 (OR 2.15 (1.18-3.92)), IL-6 (OR 2.59 (1.34-4.99)), and the receptor activator of nuclear factor κB (RANK) (OR 2.18 (1.26-3.77)) were associated with sPTB <34 gw. The area under the curve for the prediction models including these proteins was 0.653 (0.534-0.759) in the first trimester and 0.854 (0.754-0.925) in the second trimester. Conclusion A combination of inflammation-associated plasma proteins from the second trimester of pregnancy showed a good predictive ability regarding sPTB before 34 gw, suggesting it could be a valuable supplement for the assessment of the clinical risk of sPTB. However, although a high number (n=177) of plasma proteins were analyzed with a high-sensitivity method, the prediction of sPTB in the first trimester remains elusive.
Collapse
Affiliation(s)
- Maria Svenvik
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lars Brudin
- Department of Clinical Physiology, Region Kalmar County, Kalmar, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Marie Blomberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Arioz BI, Cotuk A, Yaka EC, Genc S. Proximity extension assay-based proteomics studies in neurodegenerative disorders and multiple sclerosis. Eur J Neurosci 2024; 59:1348-1358. [PMID: 38105531 DOI: 10.1111/ejn.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Neurodegenerative diseases impact the structure and operation of the nervous system, causing progressive and irreparable harm. Efforts for distinguishing neurodegenerative diseases in their early stages are continuing. Despite several biomarkers being identified, there is always search for more accurate and abundant ones. Additionally, it can be difficult to pinpoint the precise neurodegenerative disorder affecting a patient as the symptoms of these conditions frequently overlap. Numerous studies have shown that pathological changes occur years before clinical signs appear. Therefore, it is crucial to discover blood-based biomarkers for neurodegenerative diseases for easier and earlier diagnosis. Proximity extension assay is a unique proteomics method that uses antibodies linked to oligonucleotides for quantifying proteins with real-time PCR. Proximity extension assay can identify even low-quantity proteins using a small volume of specimens with increased sensitivity compared to conventional methods. In this article, we reviewed the employment of proximity extension assay technology to detect biomarkers or protein profiles for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Burak I Arioz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Izmir, Turkey
| | - Aysen Cotuk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Izmir, Turkey
| | - Emiş Cansu Yaka
- Health Sciences University, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Biomedicine and Genome Institute, Izmir, Turkey
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
3
|
Zenere A, Hellberg S, Papapavlou Lingehed G, Svenvik M, Mellergård J, Dahle C, Vrethem M, Raffetseder J, Khademi M, Olsson T, Blomberg M, Jenmalm MC, Altafini C, Gustafsson M, Ernerudh J. Prominent epigenetic and transcriptomic changes in CD4 + and CD8 + T cells during and after pregnancy in women with multiple sclerosis and controls. J Neuroinflammation 2023; 20:98. [PMID: 37106402 PMCID: PMC10134602 DOI: 10.1186/s12974-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory disease in which pregnancy leads to a temporary amelioration in disease activity as indicated by the profound decrease in relapses rate during the 3rd trimester of pregnancy. CD4+ and CD8+ T cells are implicated in MS pathogenesis as being key regulators of inflammation and brain lesion formation. Although Tcells are prime candidates for the pregnancy-associated improvement of MS, the precise mechanisms are yet unclear, and in particular, a deep characterization of the epigenetic and transcriptomic events that occur in peripheral T cells during pregnancy in MS is lacking. METHODS Women with MS and healthy controls were longitudinally sampled before, during (1st, 2nd and 3rd trimesters) and after pregnancy. DNA methylation array and RNA sequencing were performed on paired CD4+ and CD8+ T cells samples. Differential analysis and network-based approaches were used to analyze the global dynamics of epigenetic and transcriptomic changes. RESULTS Both DNA methylation and RNA sequencing revealed a prominent regulation, mostly peaking in the 3rd trimester and reversing post-partum, thus mirroring the clinical course with improvement followed by a worsening in disease activity. This rebound pattern was found to represent a general adaptation of the maternal immune system, with only minor differences between MS and controls. By using a network-based approach, we highlighted several genes at the core of this pregnancy-induced regulation, which were found to be enriched for genes and pathways previously reported to be involved in MS. Moreover, these pathways were enriched for in vitro stimulated genes and pregnancy hormones targets. CONCLUSION This study represents, to our knowledge, the first in-depth investigation of the methylation and expression changes in peripheral CD4+ and CD8+ T cells during pregnancy in MS. Our findings indicate that pregnancy induces profound changes in peripheral T cells, in both MS and healthy controls, which are associated with the modulation of inflammation and MS activity.
Collapse
Affiliation(s)
- Alberto Zenere
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Georgia Papapavlou Lingehed
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Svenvik
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
| | - Johan Mellergård
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Blomberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Altafini
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Li L, Dai F, Wang L, Sun Y, Mei L, Ran Y, Ye F. CCL13 and human diseases. Front Immunol 2023; 14:1176639. [PMID: 37153575 PMCID: PMC10154514 DOI: 10.3389/fimmu.2023.1176639] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
CCL13/MCP-4 belongs to the CC chemokine family, which induces chemotaxis in many immune cells. Despite extensive research into its function in numerous disorders, a thorough analysis of CCL13 is not yet accessible. The role of CCL13 in human disorders and existing CCL13-focused therapies are outlined in this study. The function of CCL13 in rheumatic diseases, skin conditions, and cancer is comparatively well-established, and some studies also suggest that it may be involved in ocular disorders, orthopedic conditions, nasal polyps, and obesity. We also give an overview of research that found very little evidence of CCL13 in HIV, nephritis, and multiple sclerosis. Even though CCL13-mediated inflammation is frequently linked to disease pathogenesis, it's fascinating to note that in some conditions, like primary biliary cholangitis (PBC) and suicide, it might even act as a preventative measure.
Collapse
Affiliation(s)
- Laifu Li
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Fei Dai
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
- *Correspondence: Fei Dai,
| | - Lianli Wang
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Yating Sun
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Lin Mei
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Yan Ran
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Fangchen Ye
- Department of Gastroenterology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Laboratory of Digestive Diseases of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|