1
|
Tetri LH, Penatzer JA, Tsegay KB, Tawfik DS, Burk S, Lopez I, Thakkar RK, Haileselassie B. ALTERED PROFILES OF EXTRACELLULAR MITOCHONDRIAL DNA IN IMMUNOPARALYZED PEDIATRIC PATIENTS AFTER THERMAL INJURY. Shock 2024; 61:223-228. [PMID: 38010095 PMCID: PMC10922061 DOI: 10.1097/shk.0000000000002253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Thermal injury is a major cause of morbidity and mortality in the pediatric population worldwide with secondary infection being the most common acute complication. Suppression of innate and adaptive immune function is predictive of infection in pediatric burn patients, but little is known about the mechanisms causing these effects. Circulating mitochondrial DNA (mtDNA), which induces a proinflammatory signal, has been described in multiple disease states but has not been studied in pediatric burn injuries. This study examined the quantity of circulating mtDNA and mtDNA mutations in immunocompetent (IC) and immunoparalyzed (IP) pediatric burn patients. Methods: Circulating DNA was isolated from plasma of pediatric burn patients treated at Nationwide Children's Hospital Burn Center at early (1-3 days) and late (4-7 days) time points postinjury. These patients were categorized as IP or IC based on previously established immune function testing and secondary infection. Three mitochondrial genes, D loop, ND1, and ND4, were quantified by multiplexed qPCR to assess both mtDNA quantity and mutation load. Results: At the early time point, there were no differences in plasma mtDNA quantity; however, IC patients had a progressive increase in mtDNA over time when compared with IP patients (change in ND1 copy number over time 3,880 vs. 87 copies/day, P = 0.0004). Conversely, the IP group had an increase in mtDNA mutation burden over time. Conclusion: IC patients experienced a significant increase in circulating mtDNA quantity over time, demonstrating an association between increased mtDNA release and proinflammatory phenotype in the burn patients. IP patients had significant increases in mtDNA mutation load likely representative of degree of oxidative damage. Together, these data provide further insight into the inflammatory and immunological mechanisms after pediatric thermal injury.
Collapse
Affiliation(s)
- Laura H Tetri
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford CA
- Department of Pediatrics, Stanford University, Stanford CA
| | - Julia A Penatzer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH
| | - Kaleb B Tsegay
- Department of Pediatrics, Stanford University, Stanford CA
- Department of Computer Science, Stanford University, Stanford CA
| | | | - Shelby Burk
- Department of Pediatrics, Stanford University, Stanford CA
| | - Ivan Lopez
- Department of Pediatrics, Stanford University, Stanford CA
| | - Rajan K Thakkar
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus OH
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH
| | | |
Collapse
|
2
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
3
|
Schaefer N, Lindner HA, Hahn B, Schefzik R, Velásquez SY, Schulte J, Fuderer T, Centner FS, Schoettler JJ, Himmelhan BS, Sturm T, Thiel M, Schneider-Lindner V, Coulibaly A. Pneumonia in the first week after polytrauma is associated with reduced blood levels of soluble herpes virus entry mediator. Front Immunol 2023; 14:1259423. [PMID: 38187375 PMCID: PMC10770833 DOI: 10.3389/fimmu.2023.1259423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background Pneumonia develops frequently after major surgery and polytrauma and thus in the presence of systemic inflammatory response syndrome (SIRS) and organ dysfunction. Immune checkpoints balance self-tolerance and immune activation. Altered checkpoint blood levels were reported for sepsis. We analyzed associations of pneumonia incidence in the presence of SIRS during the first week of critical illness and trends in checkpoint blood levels. Materials and methods Patients were studied from day two to six after admission to a surgical intensive care unit (ICU). Blood was sampled and physician experts retrospectively adjudicated upon the presence of SIRS and Sepsis-1/2 every eight hours. We measured the daily levels of immune checkpoints and inflammatory markers by bead arrays for polytrauma patients developing pneumonia. Immune checkpoint time series were additionally determined for clinically highly similar polytrauma controls remaining infection-free during follow-up. We performed cluster analyses. Immune checkpoint time trends in cases and controls were compared with hierarchical linear models. For patients with surgical trauma and with and without sepsis, selected immune checkpoints were determined in study baseline samples. Results In polytrauma patients with post-injury pneumonia, eleven immune checkpoints dominated subcluster 3 that separated subclusters 1 and 2 of myeloid markers from subcluster 4 of endothelial activation, tissue inflammation, and adaptive immunity markers. Immune checkpoint blood levels were more stable in polytrauma cases than controls, where they trended towards an increase in subcluster A and a decrease in subcluster B. Herpes virus entry mediator (HVEM) levels (subcluster A) were lower in cases throughout. In unselected surgical patients, sepsis was not associated with altered HVEM levels at the study baseline. Conclusion Pneumonia development after polytrauma until ICU-day six was associated with decreased blood levels of HVEM. HVEM signaling may reduce pneumonia risk by strengthening myeloid antimicrobial defense and dampening lymphoid-mediated tissue damage. Future investigations into the role of HVEM in pneumonia and sepsis development and as a predictive biomarker should consider the etiology of critical illness and the site of infection.
Collapse
|
4
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|
5
|
Penatzer JA, Wala SJ, Barash B, Alexander R, Hensley J, Wolfe A, Fabia R, Hall M, Thakkar RK. DEMOGRAPHICS TO DEFINE PEDIATRIC BURN PATIENTS AT RISK OF ADVERSE OUTCOMES. Shock 2023; 59:135-144. [PMID: 36730756 PMCID: PMC9957920 DOI: 10.1097/shk.0000000000002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Background: There is currently no standard definition of a severe burn in the pediatric patient population to identify those at higher risk of infectious complications. Our aim was to correlate total burn surface area (TBSA), burn depth, and type of burn injury to nosocomial infection rates and systemic immune system responses to better define risk factors associated with adverse outcomes. Methods: A prospective observational study at a single-center, quaternary-care, American Burn Association-verified pediatric burn center was conducted from 2016 to 2021. Blood was collected within 72 h of injury from 103 pediatric patients. Whole blood was incubated with lipopolysaccharide or phytohemagglutinin stimulation reagent to measure innate and adaptive immune response, respectively. Flow cytometry was performed on whole blood samples to measure both innate and adaptive immune cells. Unstimulated plasma was also extracted, and IL-6 and IL-10 as well as soluble proteins B- and T-lymphocyte attenuator, CD27, and T-cell immunoglobulin mucin 3 were quantified. Results: There was a significant increased risk for nosocomial infection in pediatric patients with TBSA burns of ≥20%, full-thickness burn injuries ≥5%, or flame burn injuries. There was an overall decrease in both innate and adaptive immune function in patients with TBSA burns ≥20% or full-thickness burn injuries ≥5%. Both burn injury characteristics were also associated with a significant increase in unstimulated IL-6 and IL-10 and soluble immunoregulatory checkpoint proteins. We observed a significant decrease in soluble B- and T-lymphocyte attenuator for those with a flame injury, but there were no other differences between flame injury and scald/contact burns in terms of innate and adaptive immune function. Conclusion: Burns with ≥20% TBSA or ≥5% full thickness in pediatric patients are associated with systemic immune dysfunction and increased risk of nosocomial infections.
Collapse
Affiliation(s)
- Julia A Penatzer
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Samantha Jane Wala
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Brandon Barash
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, 100 West 18 Ave, Columbus, OH, USA
| | - Robin Alexander
- Biostatistics Resource, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Josey Hensley
- Division of Critical Care Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Amber Wolfe
- Division of Critical Care Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Renata Fabia
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Mark Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
- Division of Critical Care Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| | - Rajan K Thakkar
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH, USA
| |
Collapse
|