1
|
Li G, Li Q, Tong Y, Zeng J, Dang T, Yang N, Zhou Y, Ma L, Ge Q, Zhao Z. The anticancer mechanisms of Toxoplasma gondii rhoptry protein 16 on lung adenocarcinoma cells. Cancer Biol Ther 2024; 25:2392902. [PMID: 39174877 PMCID: PMC11346528 DOI: 10.1080/15384047.2024.2392902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/29/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. Toxoplasma gondii (T.gondii) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of T. gondii ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.
Collapse
Affiliation(s)
- Guangqi Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qinhui Li
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Yongqing Tong
- Department of Clinical laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Zeng
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Tiantian Dang
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningai Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuning Zhou
- The First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Lei Ma
- College of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Qirui Ge
- The First Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Zhijun Zhao
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Clinical Research Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi'an Daxing Hospital, Xi'an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
4
|
Witalisz-Siepracka A, Denk CM, Zdársky B, Hofmann L, Edtmayer S, Harm T, Weiss S, Heindl K, Hessenberger M, Summer S, Dutta S, Casanova E, Obermair GJ, Győrffy B, Putz EM, Sill H, Stoiber D. STAT3 in acute myeloid leukemia facilitates natural killer cell-mediated surveillance. Front Immunol 2024; 15:1374068. [PMID: 39034990 PMCID: PMC11257888 DOI: 10.3389/fimmu.2024.1374068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease characterized by the clonal expansion of myeloid progenitor cells. Despite recent advancements in the treatment of AML, relapse still remains a significant challenge, necessitating the development of innovative therapies to eliminate minimal residual disease. One promising approach to address these unmet clinical needs is natural killer (NK) cell immunotherapy. To implement such treatments effectively, it is vital to comprehend how AML cells escape the NK-cell surveillance. Signal transducer and activator of transcription 3 (STAT3), a component of the Janus kinase (JAK)-STAT signaling pathway, is well-known for its role in driving immune evasion in various cancer types. Nevertheless, the specific function of STAT3 in AML cell escape from NK cells has not been deeply investigated. In this study, we unravel a novel role of STAT3 in sensitizing AML cells to NK-cell surveillance. We demonstrate that STAT3-deficient AML cell lines are inefficiently eliminated by NK cells. Mechanistically, AML cells lacking STAT3 fail to form an immune synapse as efficiently as their wild-type counterparts due to significantly reduced surface expression of intercellular adhesion molecule 1 (ICAM-1). The impaired killing of STAT3-deficient cells can be rescued by ICAM-1 overexpression proving its central role in the observed phenotype. Importantly, analysis of our AML patient cohort revealed a positive correlation between ICAM1 and STAT3 expression suggesting a predominant role of STAT3 in ICAM-1 regulation in this disease. In line, high ICAM1 expression correlates with better survival of AML patients underscoring the translational relevance of our findings. Taken together, our data unveil a novel role of STAT3 in preventing AML cells from escaping NK-cell surveillance and highlight the STAT3/ICAM-1 axis as a potential biomarker for NK-cell therapies in AML.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Clio-Melina Denk
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Lorenz Hofmann
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Theresa Harm
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Manuel Hessenberger
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrina Summer
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | | | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Gerald J. Obermair
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Eva Maria Putz
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
5
|
Ahodantin J, Wu J, Funaki M, Flores J, Wang X, Zheng P, Liu Y, Su L. Siglec-H -/- Plasmacytoid Dendritic Cells Protect Against Acute Liver Injury by Suppressing IFN-γ/Th1 Response and Promoting IL-21 + CD4 T Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101367. [PMID: 38849082 PMCID: PMC11296256 DOI: 10.1016/j.jcmgh.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND & AIMS Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Jiapeng Wu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masaya Funaki
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jair Flores
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Yang Liu
- OncoC4, Inc, Rockville, Maryland
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Onuma T, Asare-Werehene M, Fujita Y, Yoshida Y, Tsang BK. Plasma Gelsolin Inhibits Natural Killer Cell Function and Confers Chemoresistance in Epithelial Ovarian Cancer. Cells 2024; 13:905. [PMID: 38891037 PMCID: PMC11171658 DOI: 10.3390/cells13110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Plasma gelsolin (pGSN) overexpression in ovarian cancer (OVCA) disarms immune function, contributing to chemoresistance. The aim of this study was to investigate the immunoregulatory effects of pGSN expression on natural killer (NK) cell function in OVCA. OVCA tissues from primary surgeries underwent immunofluorescent staining of pGSN and the activated NK cell marker natural cytotoxicity triggering receptor 1 to analyze the prognostic impact of pGSN expression and activated NK cell infiltration. The immunoregulatory effects of pGSN on NK cells were assessed using apoptosis assay, cytokine secretion, immune checkpoint-receptor expression, and phosphorylation of STAT3. In OVCA tissue analyses, activated NK cell infiltration provided survival advantages to patients. However, high pGSN expression attenuated the survival benefits of activated NK cell infiltration. In the in vitro experiment, pGSN in OVCA cells induced NK cell death through cell-to-cell contact. pGSN increased T-cell immunoglobulin and mucin-domain-containing-3 expression (TIM-3) on activated NK cells. Further, it decreased interferon-γ production in activated TIM-3+ NK cells, attenuating their anti-tumor effects. Thus, increased pGSN expression suppresses the anti-tumor functions of NK cells. The study provides insights into why immunotherapy is rarely effective in patients with OVCA and suggests novel treatment strategies.
Collapse
Affiliation(s)
- Toshimichi Onuma
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Meshach Asare-Werehene
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yuko Fujita
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Curtis BE, Abdo Z, Graham B, LaVoy A, Evans SJM, Santangelo K, Dean GA. An Aptamer-Based Proteomic Analysis of Plasma from Cats ( Felis catus) with Clinical Feline Infectious Peritonitis. Viruses 2024; 16:141. [PMID: 38257841 PMCID: PMC10819688 DOI: 10.3390/v16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic disease manifestation of feline coronavirus (FCoV) and is the most important cause of infectious disease-related deaths in domestic cats. FIP has a variable clinical manifestation but is most often characterized by widespread vasculitis with visceral involvement and/or neurological disease that is typically fatal in the absence of antiviral therapy. Using an aptamer-based proteomics assay, we analyzed the plasma protein profiles of cats who were naturally infected with FIP (n = 19) in comparison to the plasma protein profiles of cats who were clinically healthy and negative for FCoV (n = 17) and cats who were positive for the enteric form of FCoV (n = 9). We identified 442 proteins that were significantly differentiable; in total, 219 increased and 223 decreased in FIP plasma versus clinically healthy cat plasma. Pathway enrichment and associated analyses showed that differentiable proteins were related to immune system processes, including the innate immune response, cytokine signaling, and antigen presentation, as well as apoptosis and vascular integrity. The relevance of these findings is discussed in the context of previous studies. While these results have the potential to inform diagnostic, therapeutic, and preventative investigations, they represent only a first step, and will require further validation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (B.E.C.); (A.L.); (S.J.M.E.); (K.S.)
| |
Collapse
|
8
|
Huang Z, Liu C, Zheng G, Zhang L, Zhong Q, Zhang Y, Zhao W, Qi Y. Articular Cartilage Regeneration via Induced Chondrocyte Autophagy by Sustained Release of Leptin Inhibitor from Thermo-Sensitive Hydrogel through STAT3/REDD1/mTORC1 Cascade. Adv Healthc Mater 2023; 12:e2302181. [PMID: 37673039 DOI: 10.1002/adhm.202302181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The pathophysiology of osteoarthritis (OA) is closely linked to autophagy abnormalities in articular chondrocytes, the sole mature cell type in healthy cartilage. Nevertheless, the precise molecular mechanism remains uncertain. Previous research has demonstrated that leptin activates mTORC1 , thereby inhibiting chondrocyte autophagy during the progression of OA. In this study, it is demonstrated that the presence of leptin induces a substantial increase in the expression of STAT3, leading to a notable decrease in REDD1 expression and subsequent phosphorylation of p70S6K, a recognized downstream effector of mTORC1. Conversely, inhibition of leptin yields contrasting effects. Additionally, the potential advantages of utilizing a sustained intra-articular release of a leptin inhibitor (LI) via an injectable, thermosensitive poly(D,L-lactide)-poly(ethylene glycol)-poly(D,L-lactide) (PDLLA-PEG-PDLLA: PLEL) hydrogel delivery system for the purpose of investigating its impact on cartilage repair are explored. The study conducted on LI-loaded PLEL (PLEL@LI) demonstrates remarkable efficacy in inhibiting OA and displays encouraging therapeutic advantages in the restoration of subchondral bone and cartilage. These findings establish a solid foundation for the advancement of a pioneering treatment approach utilizing PLEL@LI for OA.
Collapse
Affiliation(s)
- Zhongming Huang
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Chen Liu
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Guangping Zheng
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Qiang Zhong
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Yun Zhang
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Weicheng Zhao
- Ganzhou Municipal Key Laboratory of Bone and Joint Research, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China
| | - Yiying Qi
- Department of Orthopedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310013, China
| |
Collapse
|
9
|
Zhao X, Jiang Y, Ma X, Yang Q, Ding X, Wang H, Yao X, Jin L, Zhang Q. Demystifying the impact of prenatal tobacco exposure on the placental immune microenvironment: Avoiding the tragedy of mending the fold after death. J Cell Mol Med 2023; 27:3026-3052. [PMID: 37700485 PMCID: PMC10568673 DOI: 10.1111/jcmm.17846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Prenatal tobacco exposure (PTE) correlates significantly with a surge in adverse pregnancy outcomes, yet its pathological mechanisms remain partially unexplored. This study aims to meticulously examine the repercussions of PTE on placental immune landscapes, employing a coordinated research methodology encompassing bioinformatics, machine learning and animal studies. Concurrently, it aims to screen biomarkers and potential compounds that could sensitively indicate and mitigate placental immune disorders. In the course of this research, two gene expression omnibus (GEO) microarrays, namely GSE27272 and GSE7434, were included. Gene set enrichment analysis (GSEA) and immune enrichment investigations on differentially expressed genes (DEGs) indicated that PTE might perturb numerous innate or adaptive immune-related biological processes. A cohort of 52 immune-associated DEGs was acquired by cross-referencing the DEGs with gene sets derived from the ImmPort database. A protein-protein interaction (PPI) network was subsequently established, from which 10 hub genes were extracted using the maximal clique centrality (MCC) algorithm (JUN, NPY, SST, FLT4, FGF13, HBEGF, NR0B2, AREG, NR1I2, SEMA5B). Moreover, we substantiated the elevated affinity of tobacco reproductive toxicants, specifically nicotine and nitrosamine, with hub genes through molecular docking (JUN, FGF13 and NR1I2). This suggested that these genes could potentially serve as crucial loci for tobacco's influence on the placental immune microenvironment. To further elucidate the immune microenvironment landscape, consistent clustering analysis was conducted, yielding three subtypes, where the abundance of follicular helper T cells (p < 0.05) in subtype A, M2 macrophages (p < 0.01), neutrophils (p < 0.05) in subtype B and CD8+ T cells (p < 0.05), resting NK cells (p < 0.05), M2 macrophages (p < 0.05) in subtype C were significantly different from the control group. Additionally, three pivotal modules, designated as red, blue and green, were identified, each bearing a close association with differentially infiltrated immunocytes, as discerned by the weighted gene co-expression network analysis (WGCNA). Functional enrichment analysis was subsequently conducted on these modules. To further probe into the mechanisms by which immune-associated DEGs are implicated in intercellular communication, 20 genes serving as ligands or receptors and connected to differentially infiltrating immunocytes were isolated. Employing a variety of machine learning techniques, including one-way logistic regression, LASSO regression, random forest and artificial neural networks, we screened 11 signature genes from the intersection of immune-associated DEGs and secretory protein-encoding genes derived from the Human Protein Atlas. Notably, CCL18 and IFNA4 emerged as prospective peripheral blood markers capable of identifying PTE-induced immune disorders. These markers demonstrated impressive predictive power, as indicated by the area under the curve (AUC) of 0.713 (0.548-0.857) and 0.780 (0.618-0.914), respectively. Furthermore, we predicted 34 potential compounds, including cyclosporine, oestrogen and so on, which may engage with hub genes and attenuate immune disorders instigated by PTE. The diagnostic performance of these biomarkers, alongside the interventional effect of cyclosporine, was further corroborated in animal studies via ELISA, Western blot and immunofluorescence assays. In summary, this study identifies a disturbance in the placental immune landscape, a secondary effect of PTE, which may underlie multiple pregnancy complications. Importantly, our research contributes to the noninvasive and timely detection of PTE-induced placental immune disorders, while also offering innovative therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| | | | - Xiao Ma
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qujia Yang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyi Ding
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hanzhi Wang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xintong Yao
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Linxi Jin
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qin Zhang
- Department of Traditional Chinese Medicine (TCM) GynecologyHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
- Research Institute of Women's Reproductive Health Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
10
|
Hwang TL, Chang CH. Oridonin enhances cytotoxic activity of natural killer cells against lung cancer. Int Immunopharmacol 2023; 122:110669. [PMID: 37480753 DOI: 10.1016/j.intimp.2023.110669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Oridonin is a Chinese herbal medicine exhibiting anti-tumor properties; however, its immune modulation capacity has yet to be elucidated. Our objective in this study was to determine whether oridonin enhances the anti-tumor activity of natural killer (NK) cells against lung cancer cells. METHODS LDH-releasing assays were used to investigate the effects of oridonin on NK-92MI cell activity against lung cancer cells. Flow cytometry and real-time PCR were used to examine the effects of oridonin on degranulation markers, cytotoxic factors, activating receptors on NK-92MI cells, and ligands in lung cancer cells. Western blot analysis provided insight into the mechanisms underlying the observed effects. RESULTS Oridonin enhanced the cytotoxic effects of NK-92MI cells against A549 lung cancer cells. This effect involved upregulating the expression of the degranulation marker CD107a and IFN-γ as well as activating receptors on NK cells and their ligand MICA/B. Oridonin also inhibited STAT3 phosphorylation in A549 cells and NK-92MI cells. A lung cancer mouse model confirmed the anti-tumor effects of oridonin and NK-92MI cells, wherein both treatments alone suppressed tumor growth. Oridonin was also shown to have a synergistic effect on the anti-tumor activity of NK-92MI cells. CONCLUSIONS The ability of oridonin to enhance the cytotoxic effects of NK cells indicates its potential as a novel therapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
11
|
Zhi L, Wang X, Gao Q, He W, Shang C, Guo C, Niu Z, Zhu W, Zhang X. Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomed Pharmacother 2023; 165:115136. [PMID: 37453199 DOI: 10.1016/j.biopha.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Natural killer (NK) cells are derived from hematopoietic stem cells. They belong to the innate lymphoid cell family, which is an important part of innate immunity. This family plays a role in the body mainly through the release of perforin, granzyme, and various cytokines and is involved in cytotoxicity and cytokine-mediated immune regulation. NK cells involved in normal immune regulation and the tumor microenvironment (TME) can exhibit completely different states. Here, we discuss the growth, development, and function of NK cells in regard to intrinsic and extrinsic factors. Intrinsic factors are those that influence NK cells to promote cell maturation and exert their effector functions under the control of internal metabolism and self-related genes. Extrinsic factors include the metabolism of the TME and the influence of related proteins on the "fate" of NK cells. This review targets the potential of NK cell metabolism, cellular molecules, regulatory genes, and other mechanisms involved in immune regulation. We further discuss immune-mediated tumor therapy, which is the trend of current research.
Collapse
Affiliation(s)
- Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xing Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Qing Gao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenhui He
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chongye Shang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
12
|
Lizana-Vasquez GD, Torres-Lugo M, Dixon R, Powderly JD, Warin RF. The application of autologous cancer immunotherapies in the age of memory-NK cells. Front Immunol 2023; 14:1167666. [PMID: 37205105 PMCID: PMC10185894 DOI: 10.3389/fimmu.2023.1167666] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cellular immunotherapy has revolutionized the oncology field, yielding improved results against hematological and solid malignancies. NK cells have become an attractive alternative due to their capacity to activate upon recognition of "stress" or "danger" signals independently of Major Histocompatibility Complex (MHC) engagement, thus making tumor cells a perfect target for NK cell-mediated cancer immunotherapy even as an allogeneic solution. While this allogeneic use is currently favored, the existence of a characterized memory function for NK cells ("memory-like" NK cells) advocates for an autologous approach, that would benefit from the allogeneic setting discoveries, but with added persistence and specificity. Still, both approaches struggle to exert a sustained and high anticancer effect in-vivo due to the immunosuppressive tumor micro-environment and the logistical challenges of cGMP production or clinical deployment. Novel approaches focused on the quality enhancement and the consistent large-scale production of highly activated therapeutic memory-like NK cells have yielded encouraging but still unconclusive results. This review provides an overview of NK biology as it relates to cancer immunotherapy and the challenge presented by solid tumors for therapeutic NKs. After contrasting the autologous and allogeneic NK approaches for solid cancer immunotherapy, this work will present the current scientific focus for the production of highly persistent and cytotoxic memory-like NK cells as well as the current issues with production methods as they apply to stress-sensitive immune cells. In conclusion, autologous NK cells for cancer immunotherapy appears to be a prime alternative for front line therapeutics but to be successful, it will be critical to establish comprehensives infrastructures allowing the production of extremely potent NK cells while constraining costs of production.
Collapse
Affiliation(s)
- Gaby D. Lizana-Vasquez
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - R. Brent Dixon
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - John D. Powderly
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| | - Renaud F. Warin
- Cancer Research Clinic, Carolina BioOncology Institute (CBOI), Huntersville, NC, United States
- Human Applications Lab (HAL) - BioCytics, Huntersville, NC, United States
| |
Collapse
|
13
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
14
|
Wang H, Chen J, Li S, Yang J, Tang D, Wu W, Yu K, Cao Y, Xu K, Yin P, Chen Y, Li W. Bufalin reverses cancer-associated fibroblast-mediated colorectal cancer metastasis by inhibiting the STAT3 signaling pathway. Apoptosis 2023; 28:594-606. [PMID: 36705874 DOI: 10.1007/s10495-023-01819-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
At present, recurrence and metastasis are still important factors that lead to a poor prognosis among colorectal cancer (CRC) patients. Cancer-associated fibroblasts (CAFs) can promote tumorigenesis and development. Bufalin is the main active monomer of the clinical drug cinobufacini, which exhibits antitumor activity in various cancers. But few research have investigated the effect of bufalin in inhibiting metastasis from the perspective of the tumor microenvironment. We first isolated CAFs from freshly resected colorectal cancer patient specimens and observed the effect of CAFs on CRC cell invasion through a series of experiments. We explored the effect of bufalin on the physiological activity of CRC mediated by CAFs through experiments. In our study, we found that CAFs could promote CRC cell activity through the STAT3 pathway. Bufalin reversed CAF-mediated CRC invasion and metastasis by inhibiting the STAT3 pathway. Overexpression of STAT3 attenuated the inhibitory function of bufalin on invasion and metastasis. Taken together, bufalin can reverse CAF-mediated colorectal cancer metastasis based on inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinbao Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Sen Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Donghao Tang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wentao Wu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Kun Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China. .,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China. .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, 230032, China.
| | - Yi Chen
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China. .,Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201100, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China. .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, 230032, China.
| |
Collapse
|
15
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
16
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|