1
|
Zhu L, Tong H, Ren C, Chen K, Luo S, Wang Q, Guo M, Xu Y, Hu M, Fang J, Xu J, Shi P. Inflammation unleashed: The role of pyroptosis in chronic liver diseases. Int Immunopharmacol 2024; 141:113006. [PMID: 39213865 DOI: 10.1016/j.intimp.2024.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pyroptosis, a newly identified form of programmed cell death intertwined with inflammatory responses, is facilitated by the Gasdermin family's pore-forming activity, leading to cell lysis and the release of pro-inflammatory cytokines. This process is a double-edged sword in innate immunity, offering protection against pathogens while risking excessive inflammation and tissue damage when dysregulated. Specifically, pyroptosis operates through two distinct signaling pathways, namely the Caspase-1 pathway and the Caspase-4/5/11 pathway. In the context of chronic liver diseases like fibrosis and cirrhosis, inflammation emerges as a central contributing factor to their pathogenesis. The identification of inflammation is characterized by the activation of innate immune cells and the secretion of pro-inflammatory cytokines such as IL-1α, IL-1β, and TNF-α. This review explores the interrelationship between pyroptosis and the inflammasome, a protein complex located in liver cells that recognizes danger signals and initiates Caspase-1 activation, resulting in the secretion of IL-1β and IL-18. The article delves into the influence of the inflammasome and pyroptosis on various liver disorders, with a specific focus on their molecular and pathophysiological mechanisms. Additionally, the potential therapeutic implications of targeting pyroptosis for liver diseases are highlighted for future consideration.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Ren
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Kun Chen
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengnan Luo
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yichen Xu
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinyong Fang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinxian Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Peifei Shi
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| |
Collapse
|
2
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
4
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
5
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
6
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
8
|
Mogavero MP, Salemi M, Lanza G, Rinaldi A, Marchese G, Ravo M, Salluzzo MG, Antoci A, DelRosso LM, Bruni O, Ferini-Strambi L, Ferri R. Unveiling the pathophysiology of restless legs syndrome through transcriptome analysis. iScience 2024; 27:109568. [PMID: 38617564 PMCID: PMC11015462 DOI: 10.1016/j.isci.2024.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
The aim of this study was to analyze signaling pathways associated with differentially expressed messenger RNAs in people with restless legs syndrome (RLS). Seventeen RLS patients and 18 controls were enrolled. Coding RNA expression profiling of 12,857 gene transcripts by next-generation sequencing was performed. Enrichment analysis by pathfindR tool was carried-out, with p-adjusted ≤0.001 and fold-change ≥2.5. Nine main different network groups were significantly dysregulated in RLS: infections, inflammation, immunology, neurodegeneration, cancer, neurotransmission and biological, blood and metabolic mechanisms. Genetic predisposition plays a key role in RLS and evidence indicates its inflammatory nature; the high involvement of mainly neurotropic viruses and the TORCH complex might trigger inflammatory/immune reactions in genetically predisposed subjects and activate a series of biological pathways-especially IL-17, receptor potential channels, nuclear factor kappa-light-chain-enhancer of activated B cells, NOD-like receptor, mitogen-activated protein kinase, p53, mitophagy, and ferroptosis-involved in neurotransmitter mechanisms, synaptic plasticity, axon guidance, neurodegeneration, carcinogenesis, and metabolism.
Collapse
Affiliation(s)
- Maria P. Mogavero
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- University of Catania, Department of Surgery and Medical-Surgical Specialties, 95123 Catania, Italy
| | - Antonio Rinaldi
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy
- Genome Research Center for Health-CRGS, 84081 Baronissi, Italy
| | | | | | | | - Oliviero Bruni
- Sapienza University of Rome, Developmental and Social Psychology, 00185 Rome, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- San Raffaele Scientific Institute, Division of Neuroscience, Sleep Disorders Center, 20127 Milan, Italy
| | | |
Collapse
|
9
|
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal 2024; 22:209. [PMID: 38566180 PMCID: PMC10986108 DOI: 10.1186/s12964-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1β and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1β and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.
Collapse
Affiliation(s)
- Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Farhad Seif
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Arshideh Mashayekh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran.
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pediatric Department of Bou Ali Hospital, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
10
|
Guo ZL, Zhou J, Lin XJ, Yuan Q, Dong YL, Liu QB, Wang T. Regulation of the AGEs-induced inflammatory response in human periodontal ligament cells via the AMPK/NF-κB/ NLRP3 signaling pathway. Exp Cell Res 2024; 437:113999. [PMID: 38494067 DOI: 10.1016/j.yexcr.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Xue-Jing Lin
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qing Yuan
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Yu-Lei Dong
- School of Dentistry, Hainan Medical University, Haikou, China
| | - Qi-Bing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital, Haikou, 571199, China; Department of Pharmacology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
| | - Tao Wang
- Dental Medical Center, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital),19 Xiuhua Road, Haikou, 570311, Hainan, China.
| |
Collapse
|
11
|
Guo X, Bai Y, Jia X, Wu P, Luo L, Wang J, Li H, Guo H, Li J, Guo Z, Yun K, Gao C, Yan J. DNA methylation profiling reveals potential biomarkers of β-lactams induced fatal anaphylactic shock. Forensic Sci Int 2024; 356:111943. [PMID: 38290418 DOI: 10.1016/j.forsciint.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Anaphylaxis is a serious reaction of systemic hypersensitivity with that rapid onset and sudden death. Drug hypersensitivity, particularly induced by β-lactams, is one of the most frequent causes of anaphylaxis in adults. But identification of anaphylactic shock, in forensic sciences recently, is difficult, because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. Here, we detected DNA methylation signatures of β-lactams-induced fatal anaphylactic shock with the Illumina Infinium Human Methylation EPIC BeadChip, to screen potential forensic biomarkers and reveal the molecular mechanisms of drug-induced anaphylaxis with fatal shock and sudden death. Our results indicated that DNA methylation was associated with β-lactams-induced fatal anaphylactic shock, in which the hypomethylation played a vital role. We found that 1459 differentially methylated positions (DMPs) were mainly involved in β-lactams-induced fatal anaphylactic shock by regulating MAPK and other signaling pathways. 18 DNA methylation signatures that could separate β-lactams-induced anaphylactic shock from healthy individuals were identified. The altered methylation of DMPs can affect the transcription of corresponding genes and promote β-lactams-induced fatal anaphylactic shock. The results suggest that DNA methylation can detect forensic identification markers of drug-induced anaphylaxis with fatal shock and sudden death, and it is an effective method for the forensic diagnosis.
Collapse
Affiliation(s)
- Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China.
| | - Yaqin Bai
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Jia
- College of Pharmacy, Nankai University, Tianjin, China
| | - Peng Wu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Luo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Wang
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Li
- Institute of Forensic Science of China, Beijing, China
| | - Hualin Guo
- China Astronaut Research and Training Center, Beijing, China
| | - Jianguo Li
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China
| | - Zhongyuan Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cairong Gao
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jiangwei Yan
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
He Q, Meng C, Jia M, Tan J, Huang K, Gan H, Li L, Zhao J. NLRP6 deficiency inhibits neuroinflammation and ameliorates brain injury in ischemic stroke by blocking NLRs inflammasomes activation through proteasomal degradation of pro-caspase-1. Neurobiol Dis 2024; 192:106434. [PMID: 38341160 DOI: 10.1016/j.nbd.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Innate inflammation is crucial for ischemic stroke development. NLRP6, a nucleotide-binding and oligomerization domain-like receptors (NLRs) family member, regulates innate inflammation. Whether NLRP6 regulates neurological damage and neuroinflammation during ischemic stroke remains unclear. We report that NLRP6 is abundantly expressed in microglia and significantly upregulated in the ischemic brain. The brain injury severity was alleviated in NLRP6-deficient mice after ischemic stroke, as evidenced by reduced cerebral infarct volume, decreased neurological deficit scores, improved histopathological morphological changes, ameliorated neuronal denaturation, and relief of sensorimotor dysfunction. In the co-culture OGD/R model, NLRP6 deficiency prevented neuronal death and attenuated microglial cell injury. NLRP6 deficiency blocked several NLRs inflammasomes' activation and abrogated inflammasome-related cytokine production by decreasing the expression of the common effector pro-caspase-1. NLRP6 deficiency reduced pro-caspase-1's protein level by inducing proteasomal degradation. These findings confirm the neuroprotective role of NLRP6 deficiency in ischemic stroke and its underlying regulation mechanism in neuroinflammation and provide a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Qi He
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Changchang Meng
- Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong Province 519000, China
| | - Mengjie Jia
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Keli Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China
| | - Lingyu Li
- Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China; Department of Pathology, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China; Center for Neuroscience Research, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
13
|
Li X, Guo H, Yang J, Liu X, Li H, Yang W, Zhang L, Li Y, Wei W. Enterovirus D68 3C protease antagonizes type I interferon signaling by cleaving signal transducer and activator of transcription 1. J Virol 2024; 98:e0199423. [PMID: 38240591 PMCID: PMC10878094 DOI: 10.1128/jvi.01994-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.
Collapse
Affiliation(s)
- Xiaohan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xize Liu
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Li R, Zan Y, Wang D, Chen X, Wang A, Tan H, Zhang G, Ding S, Shen C, Wu H, Zhu S. A mouse model to distinguish NLRP6-mediated inflammasome-dependent and -independent functions. Proc Natl Acad Sci U S A 2024; 121:e2321419121. [PMID: 38289959 PMCID: PMC10861855 DOI: 10.1073/pnas.2321419121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
The NOD-like receptor (NLR) family pyrin domain containing 6 (NLRP6) serves as a sensor for microbial dsRNA or lipoteichoic acid (LTA) in intestinal epithelial cells (IECs), and initiating multiple pathways including inflammasome pathway and type I interferon (IFN) pathway, or regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. NLRP6 can exert its function in both inflammasome-dependent and inflammasome-independent manners. However, there is no tool to distinguish the contribution of individual NLRP6-mediated pathway to the physiology and pathology in vivo. Here, we validated that Arg39 and Trp50 residues in the pyrin domain (PYD) of murine NLRP6 are required for ASC recruitment and inflammasome activation, but are not important for the RNA binding and PYD-independent NLRP6 oligomerization. We further generated the Nlrp6R39E&W50E mutant mice, which showed reduced inflammasome activation in either steady state intestine or during viral infection. However, the type I IFN production in cells or intestine tissue from Nlrp6R39E&W50E mutant mice remain normal. Interestingly, NLRP6-mediated inflammasome activation or the IFN-I production seems to play distinct roles in the defense responses against different types of RNA viruses. Our work generated a useful tool to study the inflammasome-dependent role of NLRP6 in vivo, which might help to understand the complexity of multiple pathways mediated by NLRP6 in response to the complicated and dynamic environmental cues in the intestine.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Yang Zan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Decai Wang
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei230051, China
| | - Xuequn Chen
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Anmin Wang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Haoyuan Tan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Guorong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Chen Shen
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, China
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei230051, China
| |
Collapse
|
15
|
Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues. Inflammopharmacology 2024; 32:287-305. [PMID: 37991660 DOI: 10.1007/s10787-023-01389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Pulmonary fibrosis is a devastating disorder distinguished by redundant inflammation and matrix accumulation in the lung interstitium. The early inflammatory cascade coupled with recurring tissue injury orchestrates a set of events marked by perturbed matrix hemostasis, deposition of matrix proteins, and remodeling in lung tissue. Numerous investigations have corroborated a direct correlation between the NLR family pyrin domain-containing 3 (NLRP3) activation and the development of pulmonary fibrosis. Dysregulated activation of NLRP3 within the pulmonary microenvironment exacerbates inflammation and may incite fibrogenic responses. Nevertheless, the precise mechanisms through which the NLRP3 inflammasome elicits pro-fibrogenic responses remain inadequately defined. Contemporary findings suggest that the pro-fibrotic consequences stemming from NLRP3 signaling primarily hinge on the action of interleukin-1β (IL-1β). IL-1β instigates IL-1 receptor signaling, potentiating the activity of transforming growth factor-beta (TGF-β). This signaling cascade, in turn, exerts influence over various transcription factors, including SNAIL, TWIST, and zinc finger E-box-binding homeobox 1 (ZEB 1/2), which collectively foster myofibroblast activation and consequent lung fibrosis. Here, we have connected the dots to illustrate how the NLRP3 inflammasome orchestrates a multitude of signaling events, including the activation of transcription factors that facilitate myofibroblast activation and subsequent lung remodeling. In addition, we have highlighted the prominent role played by various cells in the formation of myofibroblasts, the primary culprit in lung fibrosis. We also provided a concise overview of various compounds that hold the potential to impede NLRP3 inflammasome signaling, thus offering a promising avenue for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
16
|
Ren G, Han J, Mo J, Xu Z, Feng X, Chen F, Wu Y, Peng Q. Differential Gene Expression and Immune Cell Infiltration in Patients with Steroid-induced Necrosis of the Femoral Head. Endocr Metab Immune Disord Drug Targets 2024; 24:1377-1394. [PMID: 38204239 PMCID: PMC11348512 DOI: 10.2174/0118715303266951231206114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The study aimed to study the differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head (SANFH), identify the key genes and immune cells of SANFH, and explore the relationship between immune cells and SANFH. METHODS The high-throughput gene chip dataset GSE123568 was downloaded from the GEO database, and the differential gene expression was analyzed with the R language. The STRING database and Cytoscape software were used to analyze the protein interaction network and screen key genes, and enrichment analysis was carried out on key genes. The infiltration of immune cells in SANFH patients was analyzed and verified by immunohistochemistry. RESULTS EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 are key genes in the pathogenesis of SANFH, which mainly involve myeloid cell differentiation, cytokine-mediated signaling pathway, tumor necrosis factor-mediated signaling pathway, and cellular response to tumor necrosis factor through JAK-STAT, NOD-like receptor, toll-like receptor, and other signaling pathways, leading to the occurrence of diseases; immune infiltration and immunohistochemical results have shown the expression of memory B cells and activated dendritic cells as reduced in SANFH patients, while in the same SANFH samples, M1 macrophages have been positively correlated with monocytes, and neutrophils have been negatively correlated with monocytes expression. CONCLUSION EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 have exhibited significant differences in SANFH (spontaneous osteonecrosis of the femoral head). Memory B cells, activated dendritic cells, M1 macrophages, monocytes, and neutrophils have shown abnormal expression in SANFH.
Collapse
Affiliation(s)
- Guowu Ren
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
- Department of Orthopedics, Wenshan Prefecture Traditional Chinese Medicine Hospital, Yun Nan Region, 663100 China
| | - Jie Han
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Jian Mo
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Zhiwei Xu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Xinjian Feng
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Feng Chen
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
| | - Yukun Wu
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530011 China
| | - Qinglin Peng
- Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, 530001 China
| |
Collapse
|
17
|
Wu KJ, Wang WR, Cheng QH, Li H, Yan WZ, Zhou FR, Zhang RJ. Pyroptosis in neurodegenerative diseases: from bench to bedside. Cell Biol Toxicol 2023; 39:2467-2499. [PMID: 37491594 DOI: 10.1007/s10565-023-09820-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system regulates all aspects of physiology to some extent. Neurodegenerative diseases (NDDs) lead to the progressive loss and dysfunction of neurons, which are particularly evident in Alzheimer's disease, Parkinson's disease, and many other conditions. NDDs are multifactorial diseases with complex pathogeneses, and there has been a rapid increase in the prevalence of NDDs. However, none of these diseases can be cured, making the development of novel treatment strategies an urgent necessity. Numerous studies have indicated how pyroptosis induces inflammation and affects many aspects of NDD. Therefore, components related to pyroptosis are potential therapeutic candidates and are attracting increasing attention. Here, we review the role of pyroptosis in the pathogenesis of NDDs and potential treatment options. Additionally, several of the current drugs and relevant inhibitors are discussed. Through this article, we provide theoretical support for exploring new therapeutic targets and updating clinical treatment strategies for NDDs. Notably, pyroptosis, a recently widely studied mode of cell death, is still under-researched compared to other traditional forms of cell death. Moreover, the focus of research has been on the onset and progression of NDDs, and the lack of organ-specific target discovery and drug development is a common problem for many basic studies. This urgent problem requires scientists and companies worldwide to collaborate in order to develop more effective drugs against NDDs.
Collapse
Affiliation(s)
- Ke-Jia Wu
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wan-Rong Wang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Qian-Hui Cheng
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Hao Li
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wei-Zhen Yan
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Fei-Ran Zhou
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Rui-Jie Zhang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
18
|
Lei YX, Liu Y, Xing LH, Wu YJ, Wang XY, Meng FH, Lou YN, Ma ZG, Yuan L, Yu SX. The pseudokinase MLKL contributes to host defense against Streptococcus pluranimalium infection by mediating NLRP3 inflammasome activation and extracellular trap formation. Virulence 2023; 14:2258057. [PMID: 37743649 PMCID: PMC10732671 DOI: 10.1080/21505594.2023.2258057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Host innate immunity plays a pivotal role in the early detection and neutralization of invading pathogens. Here, we show that pseudokinase mixed lineage kinase-like protein (MLKL) is required for host defence against Streptococcus pluranimalium infection by enhancing NLRP3 inflammasome activation and extracellular trap formation. Notably, Mlkl deficiency leads to increased mortality, increased bacterial colonization, severe destruction of organ architecture, and elevated inflammatory cell infiltration in murine models of S. pluranimalium pulmonary and systemic infection. In vivo and in vitro data provided evidence that potassium efflux-dependent NLRP3 inflammasome signalling downstream of active MLKL confers host protection against S. pluranimalium infection and initiates bacterial killing and clearance. Moreover, Mlkl deficiency results in defects in extracellular trap-mediated bactericidal activity. In summary, this study revealed that MLKL mediates the host defence response to S. pluranimalium, and suggests that MLKL is a potential drug target for preventing and controlling pathogen infection.
Collapse
Affiliation(s)
- Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, China
| | - Li-Hua Xing
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ya-Nan Lou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhao-Guo Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lin Yuan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Smith JR, Mochizuki M. Sarcoid Uveitis in Children. Ocul Immunol Inflamm 2023; 31:1965-1970. [PMID: 37983819 DOI: 10.1080/09273948.2023.2282609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Sarcoidosis is a multi-system granulomatous disease that often presents with uveitis. Although sarcoidosis and sarcoid uveitis typically occur in adulthood, children also may be affected. There are two distinct clinical presentations of the pediatric disease, associated with younger and older age groups, and having different causations. "Early-onset sarcoidosis", beginning at age 5 years or less, is an autosomal dominant genetic disease, caused by a mutation in the NOD2 gene. It is also known as sporadic Blau syndrome or Jabs syndrome. "Adult-type sarcoidosis", usually beginning between the ages of 8 and 15 years, is believed to represent an excessive response to an environmental antigen. There is limited literature on the management of pediatric sarcoidosis, and treatment follows an approach applied to other forms of pediatric non-infectious uveitis. When systemic immunomodulatory therapy is indicated, methotrexate and/or adalimumab are often employed. The condition may persist into adulthood, and thus long-term follow-up is indicated.
Collapse
Affiliation(s)
- Justine R Smith
- College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
20
|
Zhong Z, Su G, Yang P. Risk factors, clinical features and treatment of Behçet's disease uveitis. Prog Retin Eye Res 2023; 97:101216. [PMID: 37734442 DOI: 10.1016/j.preteyeres.2023.101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Behçet's disease is a systemic vasculitis frequently associated with intraocular inflammation. Recent findings identified independent clinical clusters in Behçet's disease, each involving distinct combinations of affected organs. Ocular Behçet's disease, mainly manifested as uveitis, is characterized as an independent cluster with a low likelihood of association with other system involvements, such as intestinal, cardiovascular, or central nervous system. A prevailing theory suggests that the pathogenesis of the disease is multifactorial, where a variety of genetic and infectious agents may interact with each other to cause the disease. Among sporadic cases, the human leukocyte antigen (HLA) genes, including HLA-B51, HLA-A26, HLA-B15, and HLA-B5701, have been found to be a key component conferring genetic susceptibility. Outside the HLA region, a set of susceptibility variants are identified, closely related to interleukin (IL)-23/IL-17 pathway, tumor necrosis factor (TNF) signaling, and pattern recognition receptor systems. Microbial infections, such as Streptococcus sanguinis, Mycobacterium tuberculosis, and Herpes simplex virus (HSV), are linked to play the triggering of disease in immunogenetically predisposed individuals. Clinically, due to the notable relapsing-remitting course of ocular Behçet's disease, the prevention of recurrent attack would be the primary treatment goal. Combination of corticosteroids and immunomodulatory drugs, such as anti-TNF agents, interferon, and conventional immunosuppressants (e.g. cyclosporine, azathioprine), have been the mainstream regimen for the disease. Future research may focus on comparing the effectiveness of immunomodulatory drugs and identifying the most suitable subgroups for a specific drug on the basis of the knowledge of the molecular heterogeneity of the disease.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
21
|
Hu Y, Yu Y, Yang R, Wang R, Pu D, Wang Y, Fan J, Zhang Y, Song J. The neuropathological mechanism of EV-A71 infection attributes to inflammatory pryoptosis and viral replication via activating the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis. Virus Res 2023; 335:199195. [PMID: 37579846 PMCID: PMC10450994 DOI: 10.1016/j.virusres.2023.199195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Neuropathological damage has been considered to be the main cause of death from EV-A71 infection, but the underlying mechanism has not been elucidated. Pyroptosis, a new form of inflammatory programmed cell death, has been verified to be involved in the pathogenesis of various viruses. circRNAs are a novel type of endogenous noncoding RNA gaining research interest in recent years, especially their special roles in the process of virus infection. Thus, in this study, we combined EV-A71, pyroptosis and circRNA to find a breakthrough in the pathogenesis of EV-A71 infection. Firstly, whether EV-A71 infection leaded to pyroptosis formation was examined by a series detection of cell death, cell viability, LDH release, caspase 1 activity, the expression levels of pyroptosis-related molecules and the concentrations of IL-1β and IL-18. Secondly, high-throughput sequencing of circRNAs was carried out to excavate the circRNA-miRNA-mRNA regulatory axis which might be associated with pyroptosis formation. Finally, the gain- and loss-of-functional experiments were further conducted to identify their functions. Our results showed that EV-A71 infection caused pyroptosis formation in SH-SY5Y cells. The circRNA sequencing analyzed the differentially expressed circRNAs and their possible functions. It was found that the hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis might be involved in pyroptosis formation during EV-A71 infection. Then, hsa_circ_0045431 sponged hsa_miR_584 and hsa_miR_584 directly targeted NLRP3 were validated by IF, dual-luciferase, qRT-PCR and WB assays. Functional experiments were performed to further uncover that the up-regulation of hsa_circ_0045431 and NLRP3 promoted the inflammatory pyroptosis and viral replication, while the up-regulation of hsa_miR_584 suppressed the inflammatory pyroptosis and viral replication, and vice versa. Collectively, our study demystified that EV-A71 infection induced pyroptosis formation by activating hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis, which could further effect viral replication. These findings provided novel insights into the pathogenesis of EV-A71 infection, and meanwhile revealed that the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis can serve as a potential biological therapeutic target for EV-A71 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yue Yu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Ruian Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Ruibing Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yujue Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Jingyuan Fan
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China.
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China.
| |
Collapse
|
22
|
Li T, Cai Y, Li C, Huang J, Chen J, Zhang Z, Cao R, Zhou B, Feng X. MDA5 with Complete CARD2 Region Inhibits the Early Replication of H9N2 AIV and Enhances the Immune Response during Vaccination. Vaccines (Basel) 2023; 11:1542. [PMID: 37896944 PMCID: PMC10611263 DOI: 10.3390/vaccines11101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Chicken melanoma differentiation-associated gene 5 (MDA5) is a member of the RLRs family that recognizes the viral RNAs invading cells and activates downstream interferon regulatory pathways, thereby inhibiting viral replication. The caspase activation and recruitment domain (CARD) is the most important region in MDA5 protein. However, the antiviral and immune enhancement of MDA5 with the CARD region remains unclear. In this study, two truncated MDA5 genes with different CARD regions, namely MDA5-1 with CARD1 plus partial CARD2 domain and MDA5-2 with CARD1 plus complete CARD2 domain, were cloned via reverse transcription PCR and ligated into plasmid Flag-N vector to be Flag-MDA5-1 and Flag-MDA5-2 plasmids. DF-1 cells were transfected with two plasmids for 24 h and then inoculated with H9N2 virus (0.1 MOI) for 6 h to detect the levels of IFN-β, PKR, MAVS, and viral HA, NA, and NS proteins expression. The results showed that MDA5-1 and MDA5-2 increased the expression of IFN-β and PKR, activated the downstream molecule MAVS production, and inhibited the expression of HA, NA, and NS proteins. The knockdown of MDA5 genes confirmed that MDA5-2 had a stronger antiviral effect than that of MDA5-1. Furthermore, the recombinant proteins MDA5-1 and MDA5-2 were combined with H9N2 inactivated vaccine to immunize SPF chickens subcutaneously injected in the neck three times. The immune response of the immunized chicken was investigated. It was observed that the antibody titers and expressions of immune-related molecules from the chicken immunized with MDA5-1 and MDA5-2 group were increased, in which the inducing function of MDA5-2 groups was the highest among all immunization groups. These results suggested that the truncated MDA5 recombinant proteins with complete CARD2 region could play vital roles in antiviral and immune enhancement. This study provides important material for the further study of the immunoregulatory function and clinical applications of MDA5 protein.
Collapse
Affiliation(s)
- Tongtong Li
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenfei Li
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajing Chen
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhou
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (T.L.); (Y.C.); (C.L.); (J.H.); (J.C.); (Z.Z.); (R.C.); (B.Z.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Yang R, Peng W, Shi S, Peng X, Cai Q, Zhao Z, He B, Tu G, Yin W, Chen Y, Zhang Y, Liu F, Wang X, Xiao D, Tao Y. The NLRP11 Protein Bridges the Histone Lysine Acetyltransferase KAT7 to Acetylate Vimentin in the Early Stage of Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300971. [PMID: 37424170 PMCID: PMC10477884 DOI: 10.1002/advs.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.
Collapse
Affiliation(s)
- Rui Yang
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Weilin Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Shuai Shi
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xiong Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qidong Cai
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Zhenyu Zhao
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Boxue He
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Guangxu Tu
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Wei Yin
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Yichuan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yuqian Zhang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000China
| | - Fang Liu
- Clinic Nursing Teaching and Research SectionThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Xiang Wang
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Desheng Xiao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Yongguang Tao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| |
Collapse
|
24
|
Li Z, Wang X, Peng Y, Yin H, Yu S, Zhang W, Ni X. Nlrp3 Deficiency Alleviates Lipopolysaccharide-Induced Acute Kidney Injury via Suppressing Renal Inflammation and Ferroptosis in Mice. BIOLOGY 2023; 12:1188. [PMID: 37759588 PMCID: PMC10525768 DOI: 10.3390/biology12091188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is a vital component of many inflammatory responses. Here, we intended to investigate the involvement of NLRP3 in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (S-AKI) and explore its mechanisms. For the first time, we validated elevated NLRP3 expression in the renal tissues of S-AKI patients by immunohistochemistry analysis. Through LPS injection in both wild-type and Nlrp3-/- mice, a S-AKI model was developed. It was found that LPS-induced kidney injury, including an abnormal morphology in a histological examination, abnormal renal function in a laboratory examination, and an increase in the expression of AKI biomarkers, was dramatically reversed in Nlrp3-deficient mice. Nlrp3 deletion alleviated renal inflammation, as evidenced by the suppression of the expression of pro-inflammatory cytokines and chemokines. A combinative analysis of RNA sequencing and the FerrDb V2 database showed that Nlrp3 knockout regulated multiple metabolism pathways and ferroptosis in LPS-induced S-AKI. Further qPCR coupled with Prussian blue staining demonstrated that Nlrp3 knockout inhibited murine renal ferroptosis, indicating a novel mechanism involving S-AKI pathogenesis by NLRP3. Altogether, the aforementioned findings suggest that Nlrp3 deficiency alleviates LPS-induced S-AKI by reducing renal inflammation and ferroptosis. Our data highlight that NLRP3 is a potential therapeutic target for S-AKI.
Collapse
Affiliation(s)
- Zhilan Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuan Wang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongling Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shenyi Yu
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412007, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
25
|
The Characteristics of Tumor Microenvironment Predict Survival and Response to Immunotherapy in Adrenocortical Carcinomas. Cells 2023; 12:cells12050755. [PMID: 36899891 PMCID: PMC10000893 DOI: 10.3390/cells12050755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.
Collapse
|
26
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
27
|
Cheng Z, McLaughlin DL, Little MW, Ferris C, Salavati M, Ingvartsen KL, Crowe MA, Wathes DC. Proportion of Concentrate in the Diet of Early Lactation Dairy Cows Has Contrasting Effects on Circulating Leukocyte Global Transcriptomic Profiles, Health and Fertility According to Parity. Int J Mol Sci 2022; 24:ijms24010039. [PMID: 36613482 PMCID: PMC9820068 DOI: 10.3390/ijms24010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The functionality of circulating leukocytes in dairy cows is suppressed after calving, with negative energy balance as a risk factor. Leukocyte transcriptomic profiles were compared separately in 44 multiparous (MP) and 18 primiparous (PP) Holstein-Friesian cows receiving diets differing in concentrate proportion to test whether immune dysfunction could be mitigated by appropriate nutrition. After calving, cows were offered either (1) low concentrate (LC); (2) medium concentrate (MC) or (3) high concentrate (HC) diets with proportions of concentrate to grass silage of 30%:70%, 50%:50% and 70%:30%, respectively. Cow phenotype data collected included circulating metabolites, milk yield and health and fertility records. RNA sequencing of circulating leukocytes at 14 days in milk was performed. The HC diet improved energy balance in both age groups. There were more differentially expressed genes in PP than MP cows (460 vs. 173, HC vs. LC comparison) with few overlaps. The MP cows on the LC diet showed upregulation of the complement and coagulation cascade and innate immune defence mechanisms against pathogens and had a trend of more cases of mastitis and poorer fertility. In contrast, the PP cows on the HC diet showed greater immune responses based on both gene expression and phenotypic data and longer interval of calving to conception. The leukocytes of MP and PP cows therefore responded differentially to the diets between age, nutrient supply and immunity affecting their health and subsequent fertility.
Collapse
Affiliation(s)
- Zhangrui Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Correspondence:
| | - Danielle L. McLaughlin
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Mark W. Little
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Conrad Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
| | - Mazdak Salavati
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, Easter Bush Campus, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Klaus L. Ingvartsen
- Department of Animal and Veterinary Science, Aarhus University, 8000 Tjele, Denmark
| | - Mark A. Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - D. Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | | |
Collapse
|