1
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
3
|
Dekkers MC, Lambooij JM, Pu X, Fagundes RR, Enciso-Martinez A, Kats K, Giepmans BNG, Guigas B, Zaldumbide A. Extracellular vesicles derived from stressed beta cells mediate monocyte activation and contribute to islet inflammation. Front Immunol 2024; 15:1393248. [PMID: 39114661 PMCID: PMC11303142 DOI: 10.3389/fimmu.2024.1393248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity. Among the underlying mechanisms, secretion of extracellular vesicles (EVs) by beta cells has been suggested to mediate the crosstalk with the immune cell compartment. Methods To study the role of cellular stress in the early events of T1D development, we generated a novel cellular model for constitutive ER stress by modulating the expression of HSPA5, which encodes BiP/GRP78, in EndoC-βH1 cells. To investigate the role of EVs in the interaction between beta cells and the immune system, we characterized the EV miRNA cargo and evaluated their effect on innate immune cells. Results Analysis of the transcriptome showed that HSPA5 knockdown resulted in the upregulation of signaling pathways involved in the unfolded protein response (UPR) and changes the miRNA content of EVs, including reduced levels of miRNAs involved in IL-1β signaling. Treatment of primary human monocytes with EVs from stressed beta cells resulted in increased surface expression of CD11b, HLA-DR, CD40 and CD86 and upregulation of IL-1β and IL-6. Conclusion These findings indicate that the content of EVs derived from stressed beta cells can be a mediator of islet inflammation.
Collapse
Affiliation(s)
- Mette C. Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Xudong Pu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphael R. Fagundes
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustin Enciso-Martinez
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode institute, Leiden University Medical Center, Leiden, Netherlands
- Amsterdam Vesicle Center, Biomedical Engineering and Physics and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kim Kats
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bruno Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Saravanan PB, Kalivarathan J, McClintock K, Mohammed S, Burch E, Morecock C, Liu J, Khan A, Levy MF, Kanak MA. Inflammatory and hypoxic stress-induced islet exosomes released during isolation are associated with poor transplant outcomes in islet autotransplantation. Am J Transplant 2024; 24:967-982. [PMID: 38364959 DOI: 10.1016/j.ajt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA.
| | - Jagan Kalivarathan
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Kaeden McClintock
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA
| | | | - Elijah Burch
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Christiane Morecock
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Aamir Khan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Marlon F Levy
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| |
Collapse
|
5
|
Álvarez-Sánchez A, Grinat J, Doria-Borrell P, Mellado-López M, Pedrera-Alcócer É, Malenchini M, Meseguer S, Hemberger M, Pérez-García V. The GPI-anchor biosynthesis pathway is critical for syncytiotrophoblast differentiation and placental development. Cell Mol Life Sci 2024; 81:246. [PMID: 38819479 PMCID: PMC11143174 DOI: 10.1007/s00018-024-05284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
Collapse
Affiliation(s)
- Andrea Álvarez-Sánchez
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Johanna Grinat
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Paula Doria-Borrell
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Maravillas Mellado-López
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Érica Pedrera-Alcócer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta Malenchini
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Salvador Meseguer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
6
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Zhou Z, Shi L, Chen B, Qian H. Regulation of regulated cell death by extracellular vesicles in acute kidney injury and chronic kidney disease. Cytokine Growth Factor Rev 2024; 76:99-111. [PMID: 38182464 DOI: 10.1016/j.cytogfr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The imbalance between proliferation and death of kidney resident cells is a crucial factor in the development of acute or chronic renal dysfunction. Acute kidney injury (AKI) is often associated with the rapid loss of tubular epithelial cells (TECs). Sustained injury leads to the loss of glomerular endothelial cells (GECs) and podocytes, which is a key mechanism in the pathogenesis of glomerular diseases. This irreversible damage resulting from progressive cell loss eventually leads to deterioration of renal function characterized by glomerular compensatory hypertrophy, tubular degeneration, and renal fibrosis. Regulated cell death (RCD), which involves a cascade of gene expression events with tight structures, plays a certain role in regulating kidney health by determining the fate of kidney resident cells. Under pathological conditions, cells in the nephron have been demonstrated to constitutively release extracellular vesicles (EVs) which act as messengers that specifically interact with recipient cells to regulate their cell death process. For therapeutic intervention, exogenous EVs have exhibited great potential for the prevention and treatment of kidney disease by modulating RCD, with enhanced effects through engineering modification. Based on the functional role of EVs, this review comprehensively explores the regulation of RCD by EVs in AKI and chronic kidney disease (CKD), with emphasis on pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
8
|
Kisielewska M, Rakoczy K, Skowron I, Górczyńska J, Kacer J, Bocheńska A, Choromańska A. Utilizing Extracellular Vesicles for Eliminating 'Unwanted Molecules': Harnessing Nature's Structures in Modern Therapeutic Strategies. Molecules 2024; 29:948. [PMID: 38474460 DOI: 10.3390/molecules29050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are small phospholipid bilayer-bond structures released by diverse cell types into the extracellular environment, maintaining homeostasis of the cell by balancing cellular stress. This article provides a comprehensive overview of extracellular vesicles, their heterogeneity, and diversified roles in cellular processes, emphasizing their importance in the elimination of unwanted molecules. They play a role in regulating oxidative stress, particularly by discarding oxidized toxic molecules. Furthermore, endoplasmic reticulum stress induces the release of EVs, contributing to distinct results, including autophagy or ER stress transmission to following cells. ER stress-induced autophagy is a part of unfolded protein response (UPR) and protects cells from ER stress-related apoptosis. Mitochondrial-derived vesicles (MDVs) also play a role in maintaining homeostasis, as they carry damaged mitochondrial components, thereby preventing inflammation. Moreover, EVs partake in regulating aging-related processes, and therefore they can potentially play a crucial role in anti-aging therapies, including the treatment of age-related diseases such as Alzheimer's disease or cardiovascular conditions. Overall, the purpose of this article is to provide a better understanding of EVs as significant mediators in both physiological and pathological processes, and to shed light on their potential for therapeutic interventions targeting EV-mediated pathways in various pathological conditions, with an emphasis on age-related diseases.
Collapse
Affiliation(s)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Kacer
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agata Bocheńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Venkatesan N, Doskey LC, Malhi H. The Role of Endoplasmic Reticulum in Lipotoxicity during Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1887-1899. [PMID: 37689385 PMCID: PMC10699131 DOI: 10.1016/j.ajpath.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Perturbations in lipid and protein homeostasis induce endoplasmic reticulum (ER) stress in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease. Lipotoxic and proteotoxic stress can activate the unfolded protein response (UPR) transducers: inositol requiring enzyme1α, PKR-like ER kinase, and activating transcription factor 6α. Collectively, these pathways induce expression of genes that encode functions to resolve the protein folding defect and ER stress by increasing the protein folding capacity of the ER and degradation of misfolded proteins. The ER is also intimately connected with lipid metabolism, including de novo ceramide synthesis, phospholipid and cholesterol synthesis, and lipid droplet formation. Following their activation, the UPR transducers also regulate lipogenic pathways in the liver. With persistent ER stress, cellular adaptation fails, resulting in hepatocyte apoptosis, a pathological marker of liver disease. In addition to the ER-nucleus signaling activated by the UPR, the ER can interact with other organelles via membrane contact sites. Modulating intracellular communication between ER and endosomes, lipid droplets, and mitochondria to restore ER homeostasis could have therapeutic efficacy in ameliorating liver disease. Recent studies have also demonstrated that cells can convey ER stress by the release of extracellular vesicles. This review discusses lipotoxic ER stress and the central role of the ER in communicating ER stress to other intracellular organelles in MASLD pathogenesis.
Collapse
Affiliation(s)
- Nanditha Venkatesan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Luke C Doskey
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
11
|
Zhang C, Lin Q, Li C, Chen Z, Deng M, Weng H, Zhu X. Analysis of endoplasmic reticulum stress-related gene signature for the prognosis and pattern in diffuse large B cell lymphoma. Sci Rep 2023; 13:13894. [PMID: 37626099 PMCID: PMC10457392 DOI: 10.1038/s41598-023-38568-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. This study aimed to determine the prognostic significance of endoplasmic reticulum (ER) stress-related genes in DLBCL. ER stress-related genes were obtained from the molecular signatures database. Gene expression data and clinical outcomes from the gene expression omnibus and TCGA datasets were collected, and differentially expressed genes (DEGs) were screened out. Gene ontology enrichment analysis, the kyoto encyclopaedia of genes and genomes pathway analysis, and geneset enrichment analysis were used to analyse the possible biological function of ER stress-related DEGs in DLBCL. Protein-protein interaction network construction using the STRING online and hub genes were identified by cytoHubba on Cytoscape software. The significant prognosis-related genes were screened, and the differential expression was validated. The immune microenvironment assessment of significant genes were evaluated. Next, the nomogram was built using univariate and multivariate Cox regression analysis. 26 ER stress-related DEGs were screened. Functional enrichment analysis showed them to be involved in the regulation of the endoplasmic reticulum mainly. NUPR1 and TRIB3 were identified as the most significant prognostic-related genes by comparison with the GSE10846, GSE11318, and TCGA datasets. NUPR1 was correlated with a good prognosis and immune infiltration in DLBCL; on the other hand, high expression of TRIB3 significantly correlated with a poor prognosis, which was an independent prognostic factor for DLBCL. In summary, we identified NUPR1 and TRIB3 as critical ER stress-related genes in DLBCL. NUPR1 might be involved in immune infiltration in DLBCL, and TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Mengmeng Deng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China.
- Department of Haematology, Quanzhou First Hospital of Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
12
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
13
|
Nunes ÁM, Falagan-Lotsch P, Roslend A, Meneghetti MR, Murphy CJ. Cytotoxicity of mini gold nanorods: intersection with extracellular vesicles. NANOSCALE ADVANCES 2023; 5:733-741. [PMID: 36756525 PMCID: PMC9890968 DOI: 10.1039/d2na00694d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
It is well-known that there are size- and shape-dependencies to nanoparticle uptake and processing by living cells. Small gold nanorods have shown to exhibit low toxicity and high clearance rates when compared to larger ones, making smaller particles more desirable for biomedical applications. In this study gold mini-rods (approximately 9.5 × 23, 8 × 26, and 6 × 26 nm, corresponding to aspect ratios 2.5, 3.2 and 4.1) and gold nanospheres (15.6 nm average diameter) were synthesized, and wrapped with cationic and anionic polyelectrolytes. This library of colloidally stable nanomaterials was exposed to human dermal fibroblasts at the relatively low concentration of 1 nM for each nanoparticle type. The cytotoxic profile of these nanoparticles and their influence on the small extracellular vesicles released by the cells was assessed. It was observed that although the nanoparticles were found in vesicles inside the cells, the cell viability, the mitochondrial membrane potential and levels of reactive oxygen species were not markedly affected by the mini gold nanorods. The production of extracellular vesicles by the cells was unaffected by gold nanoparticle exposure; moreover, no gold nanoparticles were observed in extracellular vesicles in the exosomal size range. Taken together, these results suggest that these mini gold nanorods are suitable for a wide range of cellular applications for relatively short-term studies.
Collapse
Affiliation(s)
- Ábner Magalhães Nunes
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Ave. Urbana IL 61801 USA
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas Alagoas 57072-900 Brazil
| | - Priscila Falagan-Lotsch
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Ave. Urbana IL 61801 USA
- Department of Biological Sciences, Auburn University Auburn Alabama 36849 USA
| | - Ayman Roslend
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Ave. Urbana IL 61801 USA
| | | | - Catherine Jones Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Ave. Urbana IL 61801 USA
| |
Collapse
|