1
|
Huda TI, Nguyen D, Sahoo A, Song JJ, Gutierrez AF, Chobrutskiy BI, Blanck G. Adaptive Immune Receptor Distinctions Along the Colorectal Polyp-Tumor Timelapse. Clin Colorectal Cancer 2024; 23:402-411. [PMID: 39174387 DOI: 10.1016/j.clcc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third-most common cancer diagnosed worldwide, with 1.85 million new cases per year. While mortality has significantly decreased due to preventive colonoscopy, only 5% of polyps identified progress to cancer. Studies have found that immunological alterations in other solid tumor microenvironments are associated with worse prognoses. METHODS We applied an immunogenomics approach to assess adaptive immune receptor gene expression changes that were associated with development of adenocarcinoma, utilizing 79 samples that represented normal, tubular, villous, and tumor colorectal tissue for 32 patients. RESULTS Results indicated that the number of productive TRD and TRG recombination reads, representing gamma-delta (γδ) T-cells, significantly decreased with progression from normal to tumor tissue. A further assessment of two independent CRC datasets was consistent with a decrease in TRD recombination reads with progression to CRC. Further, we identified three physicochemical parameters for immunoglobulin, complementarity determining region-3 (CDR3) amino acids associated with progression from normal to tumor tissue. CONCLUSIONS Overall, this study points towards a need for further investigation of γδ T-cells in relation to CRC development; and indicates immunoglobulin CDR3 physicochemical features as potential CRC biomarkers.
Collapse
Affiliation(s)
- Taha I Huda
- Department of Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education, HCA Florida Bayonet Point Hospital, Hudson, FL; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Diep Nguyen
- Department of Child and Family Studies, College of Behavioral and Community Sciences, University of South Florida, Tampa, FL
| | - Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Alexander F Gutierrez
- Department of Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education, HCA Florida Bayonet Point Hospital, Hudson, FL
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Sciences University Hospital, Portland, OR
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
| |
Collapse
|
2
|
Li C, Li J. Dysregulation of systemic immunity in colorectal cancer and its clinical applications as biomarkers and therapeutics. Crit Rev Oncol Hematol 2024; 204:104543. [PMID: 39454739 DOI: 10.1016/j.critrevonc.2024.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The immune system plays critical roles in the initiation and progression of colorectal cancer (CRC), and the majority of studies have focused on immune perturbations within the tumor microenvironment. In recent years, systemic immunity, which mainly occurs in the periphery, has attracted much attention. In CRC, both the tumor itself and treatments have extensive effects on systemic immunity, characterized by alterations in circulating cytokines and immune cells. In addition, intact systemic immunity is critical for the efficacy of therapies for CRC, especially immunotherapy. Therefore, various strategies aimed at alleviating the detrimental effects of traditional therapies or directly harnessing the components of systemic immunity for CRC treatment have been developed. However, whether these improvements can translate to survival benefits requires further study. This review aims to comprehensively outline the current knowledge of systemic immunity in CRC.
Collapse
Affiliation(s)
- Changqin Li
- Department of Clinical Laboratory, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China.
| |
Collapse
|
3
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
4
|
Underwood PW, Pawlik TM. Precision Medicine for Metastatic Colorectal Cancer: Where Do We Stand? Cancers (Basel) 2024; 16:3870. [PMID: 39594824 PMCID: PMC11593240 DOI: 10.3390/cancers16223870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metastatic colorectal cancer is a leading cause of cancer-related death across the world. The treatment paradigm has shifted away from systemic chemotherapy alone to include targeted therapy and immunotherapy. The past two decades have been characterized by increased investigation into molecular profiling of colorectal cancer. These molecular profiles help physicians to better understand colorectal cancer biology among patients with metastatic disease. Additionally, improved data on genetic pathways allow for specific therapies to be targeted at the underlying molecular profile. Investigation of the EGFR, VEGF, HER2, and other pathways, as well as deficient mismatch repair, has led to the development of multiple targeted therapies that are now utilized in the National Comprehensive Cancer Network guidelines for colon and rectal cancer. While these new therapies have contributed to improved survival for metastatic colorectal cancer, long-term survival remains poor. Additional investigation to understand resistance to targeted therapy and development of new targeted therapy is necessary. New therapies are under development and are being tested in the preclinical and clinical settings. The aim of this review is to provide a comprehensive evaluation of molecular profiling, currently available therapies, and ongoing obstacles in the field of colorectal cancer.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Bahramloo M, Shahabi SA, Kalarestaghi H, Rafat A, Mazloumi Z, Samimifar A, Asl KD. CAR-NK cell therapy in AML: Current treatment, challenges, and advantage. Biomed Pharmacother 2024; 177:117024. [PMID: 38941897 DOI: 10.1016/j.biopha.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Over the last decade, discovery of novel therapeutic method has been attention by the researchers and has changed the therapeutic perspective of hematological malignancies. Although NK cell play a pivotal role in the elimination of abnormal and cancerous cells, there are evidence that NK cell are disarm in hematological malignancy. Chimeric antigen receptor NK (CAR-NK) cell therapy, which includes the engineering of NK cells to detect tumor-specific antigens and, as a result, clear of cancerous cells, has created various clinical advantage for several human malignancies treatment. In the current review, we summarized NK cell dysfunction and CAR-NK cell based immunotherapy to treat AML patient.
Collapse
Affiliation(s)
- Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Alinejad Shahabi
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Samimifar
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
6
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Underwood PW, Ruff SM, Pawlik TM. Update on Targeted Therapy and Immunotherapy for Metastatic Colorectal Cancer. Cells 2024; 13:245. [PMID: 38334637 PMCID: PMC10854977 DOI: 10.3390/cells13030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Metastatic colorectal cancer remains a deadly malignancy and is the third leading cause of cancer-related death. The mainstay of treatment for metastatic colorectal cancer is chemotherapy, but unfortunately, even with recent progress, overall survival is still poor. Colorectal cancer is a heterogeneous disease, and the underlying genetic differences among tumors can define the behavior and prognosis of the disease. Given the limitations of cytotoxic chemotherapy, research has focused on developing targeted therapy based on molecular subtyping. Since the early 2000s, multiple targeted therapies have demonstrated efficacy in treating metastatic colorectal cancer and have received FDA approval. The epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), and DNA mismatch repair pathways have demonstrated promising results for targeted therapies. As new gene mutations and proteins involved in the oncogenesis of metastatic colorectal cancer are identified, new targets will continue to emerge. We herein provide a summary of the updated literature regarding targeted therapies for patients with mCRC.
Collapse
Affiliation(s)
| | | | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12th Ave., Suite 670, Columbus, OH 43210, USA; (P.W.U.); (S.M.R.)
| |
Collapse
|
8
|
Devesa JM, Zbar AP, Pescatori M, Ballestero A. Whither the coloproctologist of the future? Returning to the kindred spirit of the barber-surgeon. Tech Coloproctol 2024; 28:26. [PMID: 38236438 DOI: 10.1007/s10151-023-02894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Affiliation(s)
- J M Devesa
- Colorectal Unit, Hospital Ruber Internacional, C/La Maso, 38, 28034, Madrid, Spain.
| | - A P Zbar
- Department of Neuroscience and Anatomy, University of Melbourne Australia, Melbourne, Australia
| | - M Pescatori
- Coloproctology Units, Parioli Clinic Rome and Cobellis Clinic, Vallo Della Lucania, Italy
| | - A Ballestero
- Department of Surgery, Ramón y Cajal University Hospital Madrid, Madrid, Spain
| |
Collapse
|
9
|
Ying Li CM, Li R, Drew P, Price T, Smith E, Maddern GJ, Tomita Y, Fenix K. Clinical application of cytokine-induced killer (CIK) cell therapy in colorectal cancer: Current strategies and future challenges. Cancer Treat Rev 2024; 122:102665. [PMID: 38091655 DOI: 10.1016/j.ctrv.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health burden and is the second leading cause of cancer-related death. Cytokine induced killer (CIK) cell therapy is an immunotherapy which has the potential to meet this need. Clinical trials of CIK cell therapy for the management of CRC have reported improved clinical outcomes. However, production and delivery protocols varied significantly, and many studies were reported only in Chinese language journals. Here we present the most comprehensive review of the clinical CIK cell therapy trials for CRC management to date. We accessed both English and Chinese language clinical studies, and summarise how CIK cell therapy has been implemented, from manufacturing to patient delivery. We discuss current challenges that impede wider adoption of CIK cell therapy in CRC management.
Collapse
Affiliation(s)
- Celine Man Ying Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Runhao Li
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Paul Drew
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Eric Smith
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Guy J Maddern
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Kevin Fenix
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| |
Collapse
|
10
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [DOI: https:/doi.org/10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2024]
|
11
|
Li J, Ma S, Pei H, Jiang J, Zou Q, Lv Z. Review of T cell proliferation regulatory factors in treatment and prognostic prediction for solid tumors. Heliyon 2023; 9:e21329. [PMID: 37954355 PMCID: PMC10637962 DOI: 10.1016/j.heliyon.2023.e21329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
T cell proliferation regulators (Tcprs), which are positive regulators that promote T cell function, have made great contributions to the development of therapies to improve T cell function. CAR (chimeric antigen receptor) -T cell therapy, a type of adoptive cell transfer therapy that targets tumor cells and enhances immune lethality, has led to significant progress in the treatment of hematologic tumors. However, the applications of CAR-T in solid tumor treatment remain limited. Therefore, in this review, we focus on the development of Tcprs for solid tumor therapy and prognostic prediction. We summarize potential strategies for targeting different Tcprs to enhance T cell proliferation and activation and inhibition of cancer progression, thereby improving the antitumor activity and persistence of CAR-T. In summary, we propose means of enhancing CAR-T cells by expressing different Tcprs, which may lead to the development of a new generation of cell therapies.
Collapse
Affiliation(s)
- Jiayu Li
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Shuhan Ma
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jici Jiang
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [PMID: 37566162 DOI: 10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
In recent years, the incidence of colorectal cancer (CRC) and breast cancer (BC) has increased worldwide and caused a higher mortality rate due to the lack of selective anti-tumor therapies. Current chemotherapies and surgical interventions are significantly preferred modalities to treat CRC or BC in advanced stages but the prognosis for patients with advanced CRC and BC remains dismal. The immunotherapy technique of chimeric antigen receptor (CAR)-T cells has resulted in significant clinical outcomes when treating hematologic malignancies. The novel CAR-T therapy target antigens include GUCY2C, CLEC14A, CD26, TEM8/ANTXR1, PDPN, PTK7, PODXL, CD44, CD19, CD20, CD22, BCMA, GD2, Mesothelin, TAG-72, CEA, EGFR, B7H3, HER2, IL13Ra2, MUC1, EpCAM, PSMA, PSCA, NKG2D. The significant aim of this review is to explore the recently updated information pertinent to several novel targets of CAR-T for CRC, and BC. We vividly described the challenges of CAR-T therapies when treating CRC or BC. The immunosuppressive microenvironment of solid tumors, the shortage of tumor-specific antigens, and post-treatment side effects are the major hindrances to promoting the development of CAR-T cells. Several clinical trials related to CAR-T immunotherapy against CRC or BC have already been in progress. This review benefits academicians, clinicians, and clinical oncologists to explore more about the novel CAR-T targets and overcome the challenges during this therapy.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey K Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Narasimha M Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh, 515721, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Namitha Bannimath
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshedong Str., Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
13
|
Okoye C, Tran M, Soladoye E, Akahara DE, Emeasoba CM, Ojinna BT, Anasonye E, Obadare OO, Diala CS, Salaudeen BH, Evbayekha EO, Okobi OE. A Review of 10-Year Survivability of Immunotherapy in the Management of Colon Cancer. Cureus 2023; 15:e43189. [PMID: 37692610 PMCID: PMC10485874 DOI: 10.7759/cureus.43189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Colon cancer is one of the most common cancers in the United States of America. In addition to conventional treatment approaches such as surgery, chemotherapy, and radiation for colorectal cancer, immunotherapy has gained recognition over the past few years. However, its effectiveness in colorectal cancer treatment is controversial. Our study investigates the survival and progression-free rates of immunotherapy for different types of colorectal cancer over the last 10 years. We conducted literature reviews from various clinical trials and research studies to evaluate immunotherapy's role in colorectal cancer treatment. We also investigated how it affects clinical outcomes. We discovered a range of effective immunotherapy approaches targeting various growth factors and signaling pathways. These modalities include monoclonal antibodies aimed at growth factors such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), human epidermal growth factor receptor 2 (HER2), and downstream signaling pathways such as mitogen-activated protein kinase (MAPK), kirsten rat sarcoma viral oncogene (KRAS), B-raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatase and tensin homolog (PTEN). Additionally, we identified immune checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors and programmed cell death ligand 1 (PD-L1) inhibitors, as well as target therapy and adoptive cell therapy as promising immunotherapeutic options. Nevertheless, the application of immunotherapy remains highly limited due to various factors influencing survival and progression-free rates, including tumor microenvironment, microsatellite instability, immune checkpoint expression, and gut microbiome. Additionally, its effectiveness is restricted to a small subgroup of patients, accompanied by side effects and the development of drug resistance mechanisms. To unlock its full potential, further clinical trials and research on molecular pathways in colorectal cancer are imperative. This will ultimately enhance drug discovery success and lead to more effective clinical management approaches.
Collapse
Affiliation(s)
- Chiugo Okoye
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - My Tran
- Internal Medicine, Baptist Health-University of Arkansas for Medical Sciences - Arkansas, North Little Rock, USA
| | | | | | | | - Blessing T Ojinna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Chiamaka S Diala
- Health/Biomedical Informatics, The University of Texas Health Science Center, Houston, USA
- Internal Medicine, Piedmont Athens Regional, Athens, USA
| | | | | | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| |
Collapse
|
14
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
15
|
Garza Treviño EN, Quiroz Reyes AG, Rojas Murillo JA, de la Garza Kalife DA, Delgado Gonzalez P, Islas JF, Estrada Rodriguez AE, Gonzalez Villarreal CA. Cell Therapy as Target Therapy against Colon Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24098163. [PMID: 37175871 PMCID: PMC10179203 DOI: 10.3390/ijms24098163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with properties, such as self-renewal, differentiation, and tumorigenicity. CSCs have been proposed as a plausible therapeutic target as they are responsible for tumor recurrence, metastasis, and conventional therapy resistance. Selectively targeting CSCs is a promising strategy to eliminate the propagation of tumor cells and impair overall tumor development. Recent research shows that several immune cells play a crucial role in regulating tumor cell proliferation by regulating different CSC maintenance or proliferation pathways. There have been great advances in cellular immunotherapy using T cells, natural killer (NK) cells, macrophages, or stem cells for the selective targeting of tumor cells or CSCs in colorectal cancer (CRC). This review summarizes the CRC molecular profiles that may benefit from said therapy and the main vehicles used in cell therapy against CSCs. We also discuss the challenges, limitations, and advantages of combining conventional and/or current targeted treatments in the late stages of CRC.
Collapse
Affiliation(s)
- Elsa N Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Adriana G Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - David A de la Garza Kalife
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Jose F Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico
| | - Ana Esther Estrada Rodriguez
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500. Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
16
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Rezouki I, Zohair B, Ssi SA, Karkouri M, Razzouki I, Elkarroumi M, Badou A. High VISTA expression is linked to a potent epithelial-mesenchymal transition and is positively correlated with PD1 in breast cancer. Front Oncol 2023; 13:1154631. [PMID: 37152039 PMCID: PMC10157209 DOI: 10.3389/fonc.2023.1154631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Breast cancer is the most common type of tumor in women worldwide. Immune checkpoint inhibitors, particularly anti-PDL1, have shown promise as a therapeutic approach for managing this disease. However, this type of immunotherapy still fails to work for some patients, leading researchers to explore alternative immune checkpoint targets. The Ig suppressor of T cell activation domain V (VISTA) has emerged as a novel immune checkpoint that delivers inhibitory signals to T cells and has demonstrated encouraging results in various cancers. Our study investigated the association of VISTA expression with clinicopathological parameters in breast cancer patients, its involvement in the Epithelial-Mesenchymal-Transition (EMT) process, and its correlation with PD1 expression. Transcriptomic analysis revealed that VISTA was associated with lobular and metaplastic histological type, tumor size, lymph node status, ER and PR negative status, and the TNBC molecular subtype. Furthermore, VISTA expression was strongly associated with an immunosuppressive tumor microenvironment. Immunohistochemistry analysis corroborated the transcriptomic results, indicating that VISTA was expressed in most immune cells (94%) and was significantly expressed in breast cancer tumor cells compared to matched adjacent tissues. Our study also showed for the first time that VISTA overexpression in breast cancer cells could be associated with the EMT process. Additionally, we identified a positive correlation between VISTA and PD-1 expression. Together, these results highlight the immunosuppressive effect of VISTA in breast cancer patients and suggest that bi-specific targeting of VISTA and PD-1 in combination therapy could be beneficial for these patients.
Collapse
Affiliation(s)
- Ibtissam Rezouki
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Basma Zohair
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Saadia Ait Ssi
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Department of Obstetrics and Gynecology, University Hospital Center (CHU) Ibn Rochd, Casablanca, Morocco
| | - Abdallah Badou
- Laboratory of Immunogenetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco, and Mohammed VI University of Sciences and Health, Casablanca, Morocco
- *Correspondence: Abdallah Badou, ; ;
| |
Collapse
|