1
|
Li Y, Wu IXY, Wang X, Song J, Chen Q, Zhang W. Immunological parameters of maternal peripheral blood as predictors of future pregnancy outcomes in patients with unexplained recurrent pregnancy loss. Acta Obstet Gynecol Scand 2024; 103:1444-1456. [PMID: 38511530 PMCID: PMC11168276 DOI: 10.1111/aogs.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Unexplained recurrent pregnancy loss (URPL), affecting approximately 1%-5% of women, exhibits a strong association with various maternal factors, particularly immune disorders. However, accurately predicting pregnancy outcomes based on the complex interactions and synergistic effects of various immune parameters without an automated algorithm remains challenging. MATERIAL AND METHODS In this historical cohort study, we analyzed the medical records of URPL patients treated at Xiangya Hospital, Changsha, China, between January 2020 and October 2022. The primary outcomes included clinical pregnancy and miscarriage. Predictors included complement, autoantibodies, peripheral lymphocytes, immunoglobulins, thromboelastography findings, and serum lipids. Least absolute shrinkage and selection operator (LASSO) analysis and logistic regression analysis was performed for model development. The model's performance, discriminatory, and clinical applicability were assessed using area under the curve (AUC), calibration curve, and decision curve analysis, respectively. Additionally, models were visualized by constructing dynamic and static nomograms. RESULTS In total, 502 patients with URPL were enrolled, of whom 291 (58%) achieved clinical pregnancy and 211 (42%) experienced miscarriage. Notable differences in complement, peripheral lymphocytes, and serum lipids were observed between the two outcome groups. Moreover, URPL patients with elevated peripheral NK cells (absolute counts and proportion), decreased complement levels, and dyslipidemia demonstrated a significantly increased risk of miscarriage. Four models were developed in this study, of which Model 2 demonstrated superior performance with only seven predictors, achieving an AUC of 0.96 (95% CI: 0.93-0.99) and an accuracy of 0.92. A web-based platform was established to visually present model 2 and to facilitate its utilization by clinicians in outpatient settings (available from: https://yingrongli.shinyapps.io/liyingrong/). CONCLUSIONS Our findings suggest that the implementation of such prediction models could serve as valuable tools for providing comprehensive information and facilitating clinicians in their decision-making processes.
Collapse
Affiliation(s)
- Yingrong Li
- Department of General MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- International Collaborative Research Center for Medical MetabolomicsXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Irene X. Y. Wu
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Xuan Wang
- Department of General MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- International Collaborative Research Center for Medical MetabolomicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Hunan Provincial Key Laboratory of Clinical EpidemiologyCentral South UniversityChangshaHunanChina
| | - Jinlu Song
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Quan Chen
- Department of General MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- International Collaborative Research Center for Medical MetabolomicsXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Weiru Zhang
- Department of General MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- International Collaborative Research Center for Medical MetabolomicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Hunan Provincial Key Laboratory of Clinical EpidemiologyCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Li W, Huang X, Wei Y, Yin T, Diao L. Connecting the dots: the role of fatigue in female infertility. Reprod Biol Endocrinol 2024; 22:66. [PMID: 38849828 PMCID: PMC11157719 DOI: 10.1186/s12958-024-01235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Fatigue, an increasingly acknowledged symptom in various chronic diseases, has garnered heightened attention, during the medical era of bio-psycho-social model. Its persistence not only significantly compromises an individual's quality of life but also correlates with chronic organ damage. Surprisingly, the intricate relationship between fatigue and female reproductive health, specifically infertility, remains largely unexplored. Our exploration into the existing body of evidence establishes a compelling link between fatigue with uterine and ovarian diseases, as well as conditions associated with infertility, such as rheumatism. This observation suggests a potentially pivotal role of fatigue in influencing overall female fertility. Furthermore, we propose a hypothetical mechanism elucidating the impact of fatigue on infertility from multiple perspectives, postulating that neuroendocrine, neurotransmitter, inflammatory immune, and mitochondrial dysfunction resulting from fatigue and its co-factors may further contribute to endocrine disorders, menstrual irregularities, and sexual dysfunction, ultimately leading to infertility. In addition to providing this comprehensive theoretical framework, we summarize anti-fatigue strategies and accentuate current knowledge gaps. By doing so, our aim is to offer novel insights, stimulate further research, and advance our understanding of the crucial interplay between fatigue and female reproductive health.
Collapse
Grants
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- 82371684, 82271672 General Program of the National Natural Science Foundation of China
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- JCRCWL-2022-001 the Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
- 2022A1515010650, 2023A1515011675 the General Program of the Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Wenzhu Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Xiaoyan Huang
- Department of Rheumatology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, 518053, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518045, China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri- implantation, Shenzhen, 518045, China.
| |
Collapse
|
3
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
4
|
Fang Z, Mao J, Huang J, Sun H, Lu X, Lei H, Dong J, Chen S, Wang X. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice. Cell Commun Signal 2024; 22:230. [PMID: 38627796 PMCID: PMC11022359 DOI: 10.1186/s12964-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.
Collapse
Affiliation(s)
- Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiaqin Mao
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huijun Sun
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xueyan Lu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Xiaohong Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
5
|
Moldenhauer LM, Foyle KL, Wilson JJ, Wong YY, Sharkey DJ, Green ES, Barry SC, Hull ML, Robertson SA. A disrupted FOXP3 transcriptional signature underpins systemic regulatory T cell insufficiency in early pregnancy failure. iScience 2024; 27:108994. [PMID: 38327801 PMCID: PMC10847744 DOI: 10.1016/j.isci.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.
Collapse
Affiliation(s)
- Lachlan M. Moldenhauer
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kerrie L. Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Jasmine J. Wilson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ying Y. Wong
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - David J. Sharkey
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ella S. Green
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Simon C. Barry
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - M. Louise Hull
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Li L, Liu Y, Zhou W, Yang C, Feng T, Li H. Human chorionic gonadotrophin indirectly activates peripheral γδT cells to produce interleukin-10 during early pregnancy. Immun Inflamm Dis 2024; 12:e1119. [PMID: 38270320 PMCID: PMC10777880 DOI: 10.1002/iid3.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUNDS The immunomodulatory properties of human chorionic gonadotrophin (hCG) have been identified to be critical for successful pregnancy. However, the effects of hCG on peripheral γδT cells during early pregnancy have not been reported previously. METHODS We cocultured the purified γδT cells and peripheral blood mononuclear cells (PBMCs) with early pregnancy-relevant hCG concentrations and investigated the changes in the immune functional characteristics of γδT cells via flow cytometry assays. RESULTS The ratios of CD69+ and IL-10+ γδT cells were increased in early pregnant women compared to nonpregnant women. γδT cells expressed low levels of the mannose receptor (CD206) instead of the classical hCG/LH receptor for hCG. The direct treatment of purified γδT cells with early pregnancy-relevant hCG concentrations may have no significant effects on their immune functions. Interestingly, when PBMCs were treated with the same broad range of hCG concentrations, the ratios of CD69+ and IL-10+ γδT cells to total γδT cells were significantly increased. CONCLUSION Certain early pregnancy-relevant hCG concentrations could enhance the ratios of peripheral CD69+ and IL-10+ γδT cells, contributing to the activation of γδT cells and immunological tolerance during early pregnancy. However, these affects may not be strongly mediated by direct ligand-receptor interactions and they may highly depend on immune microenvironment. Our novel observations propose a perspective into the endocrine-immune dialog that exists between the fetus and maternal immune cells.
Collapse
Affiliation(s)
- Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Chuan Yang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease‐Related Molecular NetworkSichuan UniversityChengduChina
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Stope MB, Mustea A, Sänger N, Einenkel R. Immune Cell Functionality during Decidualization and Potential Clinical Application. Life (Basel) 2023; 13:life13051097. [PMID: 37240742 DOI: 10.3390/life13051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent 40-50% of the decidua at the time of implantation. Their importance for the implantation, maintenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions, were discussed. There is a rising number of commercially available diagnostic tools. However, the intervention options are still limited and/or poorly studied. In order for us to make big steps towards the proper use of reproductive immunology findings, we need to understand the mechanisms and especially support translational research.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|