1
|
Yan D, Zhang Y, Huang Y, Ouyang W. Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion. Inflammation 2024; 47:1648-1666. [PMID: 38460093 DOI: 10.1007/s10753-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunuo Zhang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuhan Huang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Weijie Ouyang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China.
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Shih KC, Tong L. The Conjunctival Microbiome and Dry Eye: What We Know and Controversies. Eye Contact Lens 2024; 50:208-211. [PMID: 38345108 DOI: 10.1097/icl.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 04/26/2024]
Abstract
ABSTRACT Dry eye disease is a common multifactorial condition that may be idiopathic or associated with autoimmune conditions, such as Sjogren syndrome. Commensal microorganisms modify immune responses, so it is relevant to understand how they modify such immune-mediated diseases. Microbiota in the gut regulate inflammation in the eye, and conversely, severe inflammation of the ocular surface results in alteration of gut microbiome. The conjunctiva microbiome can be analyzed using 16S or shotgun metagenomics. The amount of microbial DNA in ocular surface mucosa relative to human DNA is limited compared with the case of the intestinal microbiome. There are challenges in defining, harvesting, processing, and analyzing the microbiome in the ocular surface mucosa. Recent studies have shown that the conjunctiva microbiome depends on age, presence of local and systemic inflammation, and environmental factors. Microbiome-based therapy, such as the use of oral probiotics to manage dry eye disease, has initial promising results. Further longitudinal studies are required to investigate the alteration of the conjunctival microbiome after local therapy and surgery.
Collapse
Affiliation(s)
- Kendrick C Shih
- Department of Ophthalmology (K.C.S.), The University of Hong Kong; Corneal and External Eye Disease Service (L.T.), Singapore National Eye Center, Singapore; Ocular Surface Research Group (L.T.), Singapore Eye Research Institute, Singapore; and Eye Academic Clinical Program (L.T.), Duke-National University of Singapore, Singapore
| | | |
Collapse
|
3
|
Woronkowicz M, Roberts H, Skopiński P. The Role of Insulin-like Growth Factor (IGF) System in the Corneal Epithelium Homeostasis-From Limbal Epithelial Stem Cells to Therapeutic Applications. BIOLOGY 2024; 13:144. [PMID: 38534414 DOI: 10.3390/biology13030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes. This review examines its role in maintaining the corneal epithelium homeostasis, with a special focus on the interplay with corneal limbal stem cells and the potential therapeutic applications of the system components.
Collapse
Affiliation(s)
- Małgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Piotr Skopiński
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Huang B, Gui M, An H, Shen J, Ye F, Ni Z, Zhan H, Che L, Lai Z, Zeng J, Peng J, Lin J. Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury. Biomed Pharmacother 2023; 166:115387. [PMID: 37643486 DOI: 10.1016/j.biopha.2023.115387] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Administration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1β, IFN-γ, TNF-α) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-κB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-κB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotgalicoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclostridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-κB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Mengxuan Gui
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiayu Shen
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Feimin Ye
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Hanzhang Zhan
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jiahan Zeng
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
5
|
Lu X, Chen Z, Lu J, Watsky M. Effects of Topical 1,25 and 24,25 Vitamin D on Diabetic, Vitamin D Deficient and Vitamin D Receptor Knockout Mouse Corneal Wound Healing. Biomolecules 2023; 13:1065. [PMID: 37509101 PMCID: PMC10377579 DOI: 10.3390/biom13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Delayed or prolonged corneal wound healing and non-healing corneas put patients at risk for ocular surface infections and subsequent stromal opacification, resulting in discomfort or visual loss. It is important to enhance corneal wound healing efficiency and quality. Vitamin D (Vit D) is both a hormone and a vitamin, and its insufficiency has been linked to immune disorders and diabetes. For this study, wound healing and recruitment of CD45+ cells into the wound area of normoglycemic and diabetic mice were examined following corneal epithelial debridement and treatment with 1,25-dihyroxyvitamin D (1,25 Vit D) or 24,25-dihydroxyvitamin D (24,25 Vit D). Treatment with topical 1,25-dihyroxyvitamin D (1,25 Vit D) resulted in significantly increased corneal wound healing rates of normoglycemic, diabetic and diabetic Vit D deficient mice. Furthermore, 24,25-dihydroxyvitamin D (24,25 Vit D) significantly increased corneal wound healing of diabetic Vit D deficient and Vit D receptor knockout (VDR KO) mice. In addition, CD45+ cell numbers were reduced in diabetic and VDR KO mouse corneas compared to normoglycemic mice, and 24,25 Vit D increased the recruitment of CD45+ cells to diabetic mouse corneas after epithelial debridement. CD45+ cells were found to infiltrate into the corneal basal epithelial layer after corneal epithelial debridement. Our data indicate that topical Vit D promotes corneal wound healing and further supports previous work that the Vit D corneal wound healing effect is not totally VDR-dependent.
Collapse
Affiliation(s)
| | | | | | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|