1
|
Lu X, Ma K, Ren J, Peng H, Wang J, Wang X, Nasser MI, Liu C. The immune regulatory role of lymphangiogenesis in kidney disease. J Transl Med 2024; 22:1053. [PMID: 39578812 PMCID: PMC11583545 DOI: 10.1186/s12967-024-05859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangiogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunological response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. Ongoing study reveals lymphangiogenesis's different architecture and functions in numerous tissues and organs. New research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney's immunological regulatory function of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing empirical data and new developments in understanding its immunological regulatory function in kidney disease. An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases might help design novel medicines targeting lymphatics to treat kidney pathologies.
Collapse
Affiliation(s)
- Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
2
|
Wegener J, Dennhardt S, Loeffler I, Coldewey SM. Transition from acute kidney injury to chronic kidney disease in a long-term murine model of Shiga toxin-induced hemolytic-uremic syndrome. Front Immunol 2024; 15:1469353. [PMID: 39450175 PMCID: PMC11499141 DOI: 10.3389/fimmu.2024.1469353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Up to 40% of patients with typical hemolytic-uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia and acute kidney injury (AKI), develop long-term consequences, most prominently chronic kidney disease (CKD). The transition from AKI to CKD, particularly in the context of HUS, is not yet fully understood. The objective of this study was to establish and characterize a Shiga toxin (Stx)-induced long-term HUS model to facilitate the study of mechanisms underlying the AKI-to-CKD transition. Methods C57BL/6J mice were subjected to 5, 10, 15, or 20 ng/kg Stx on days 0, 3, and 6 of the experiment and were sacrificed on day 14 or day 21 to identify the critical time of turnover from the acute to the chronic state of HUS disease. Results Acute disease, indicated by weight loss, plasma neutrophil gelatinase-associated lipocalin (NGAL) and urea, and renal neutrophils, diminished after 14 days and returned to sham level after 21 days. HUS-associated hemolytic anemia transitioned to non-hemolytic microcytic anemia along with unchanged erythropoietin levels after 21 days. Renal cytokine levels indicated a shift towards pro-fibrotic signaling, and interstitial fibrosis developed concentration-dependently after 21 days. While Stx induced the intrarenal invasion of pro-inflammatory M1 and pro-fibrotic M2 macrophages after 14 days, pro-fibrotic M2 macrophages were the dominant phenotype after 21 days. Conclusion In conclusion, we established and characterized the first Stx-induced long-term model of HUS. This tool facilitates the study of underlying mechanisms in the early AKI-to-CKD transition following HUS and allows the testing of compounds that may protect patients with AKI from developing subsequent CKD.
Collapse
Affiliation(s)
- Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Kröller S, Schober J, Krieg N, Dennhardt S, Pirschel W, Kiehntopf M, Conway EM, Coldewey SM. The Role of the N-Terminal Domain of Thrombomodulin and the Potential of Recombinant Human Thrombomodulin as a Therapeutic Intervention for Shiga Toxin-Induced Hemolytic-Uremic Syndrome. Toxins (Basel) 2024; 16:409. [PMID: 39330867 PMCID: PMC11435709 DOI: 10.3390/toxins16090409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing Escherichia coli (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein and its N-terminal domain has been implicated in the pathophysiology of some cases of HUS. Indeed, the administration of recombinant human TM (rhTM) may have efficacy in HUS. We used a Stx-based murine model of HUS to characterize the role of the N-terminal domain of TM. We show that mice lacking that domain (TMLed (-/-)) are more sensitive to Stx, with enhanced HUS progression seen at 4 days and increased mortality at 7 days post-HUS induction. In spite of these changes, renal function was less affected in surviving Stx-challenged TMLed (-/-) mice compared to their wild-type counterparts TMLed (+/+) at 7 days. Contrary to few clinical case reports from Japan, the administration of rhTM (0.06 mg/kg) to wild-type mice (C57BL/6J) with HUS did not protect against disease progression. This overall promising, but also contradictory body of evidence, requires further systematic preclinical and clinical investigations to clarify the role of TM in HUS as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Jana Schober
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Wiebke Pirschel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (S.K.)
- Septomics Research Center, Jena University Hospital, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
4
|
Müller T, Krieg N, Lange-Polovinkin AI, Wissuwa B, Gräler MH, Dennhardt S, Coldewey SM. Deletion of Sphingosine Kinase 2 Attenuates Acute Kidney Injury in Mice with Hemolytic-Uremic Syndrome. Int J Mol Sci 2024; 25:7683. [PMID: 39062926 PMCID: PMC11277509 DOI: 10.3390/ijms25147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Typical hemolytic uremic syndrome (HUS) can occur as a severe systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli. Its pathology can be induced by Stx types, resulting in toxin-mediated damage to renal barriers, inflammation, and the development of acute kidney injury (AKI). Two sphingosine kinase (SphK) isozymes, SphK1 and SphK2, have been shown to be involved in barrier maintenance and renal inflammatory diseases. Therefore, we sought to determine their role in the pathogenesis of HUS. Experimental HUS was induced by the repeated administration of Stx2 in wild-type (WT) and SphK1 (SphK1-/-) or SphK2 (SphK2-/-) null mutant mice. Disease severity was evaluated by assessing clinical symptoms, renal injury and dysfunction, inflammatory status and sphingolipid levels on day 5 of HUS development. Renal inflammation and injury were found to be attenuated in the SphK2-/- mice, but exacerbated in the SphK1-/- mice compared to the WT mice. The divergent outcome appeared to be associated with oppositely altered sphingolipid levels. This study represents the first description of the distinct roles of SphK1-/- and SphK2-/- in the pathogenesis of HUS. The identification of sphingolipid metabolism as a potential target for HUS therapy represents a significant advance in the field of HUS research.
Collapse
Affiliation(s)
- Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Antonia I. Lange-Polovinkin
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- Center for Molecular Biomedicine (CMB) and Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
5
|
Selamet U, Ahdoot RS, Salasnek R, Abdelnour L, Hanna RM. Onconephrology: mitigation of renal injury in chemotherapy administration. Curr Opin Nephrol Hypertens 2024; 33:257-266. [PMID: 38095483 DOI: 10.1097/mnh.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
PURPOSE OF REVIEW Onconephrology was first coined as a name for the intersection of cancer medicine and nephrology in the early 2010s. It was recognized then that beyond and understanding of kidney physiology, a new generation of nephrologists skilled in both molecular biology and precision medicine were needed to deal with the challenges of emerging cancer therapies. Stem cell transplants, biologic agents, adjuvants blocking basic cellular signaling pathways, immunotherapy were found to promote novel anticancer outcomes, but also to pose new risks to the kidneys. The field rapidly overlapped with emerging expertise in vascular glomerular disease, glomerular disease, and the same biologic agents now applied to auto immune systemic and kidney diseases. RECENT FINDINGS Many categories of chemotherapeutic agents have been discovered to have adverse renal side effects. In this review, we address classic chemotherapeutic nephrotoxicity and oncologic clinical situations leading to acute kidney injury. We also review the frontiers of nephrotoxicity reported with cell cycle inhibitors, diverse classes of tyrosine kinase inhibitors, immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, anticancer vaccines, and thrombotic microangiopathies triggered by malignancy and chemotherapy. The aim will be to focus on published strategies to mitigate nephrotoxicity. SUMMARY As onconephrology expands into its own field, it gives birth to new subdisciplines. An understanding that patient populations want the benefits of chemotherapy without the renal (and other) systemic toxicities is emerging. A need to develop a new class of molecular and genetic experts in onconephrology to mitigate nephrotoxicity from chemotherapy is apparent and urgent.
Collapse
Affiliation(s)
- Umut Selamet
- Department of Medical Oncology of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca S Ahdoot
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| | - Reed Salasnek
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| | - Lama Abdelnour
- Department of Medicine-Division of Nephrology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramy M Hanna
- Department of Medicine- Division of Nephrology, University of California-Irvine, Irvine
| |
Collapse
|