1
|
Bhattarai U, Xu R, He X, Pan L, Niu Z, Wang D, Zeng H, Chen JX, Clemmer JS, Chen Y. High selenium diet attenuates pressure overload-induced cardiopulmonary oxidative stress, inflammation, and heart failure. Redox Biol 2024; 76:103325. [PMID: 39197316 PMCID: PMC11399737 DOI: 10.1016/j.redox.2024.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Selenium (Se) deficiency is associated with the development of Keshan disease, a cardiomyopathy associated with massive cardiac immune cell infiltration that can lead to heart failure (HF). The purpose of this study was to determine whether high Se diet can attenuate systolic overload-induced cardiopulmonary inflammation and HF. Briefly, transverse aortic constriction (TAC)-induced cardiopulmonary oxidative stress, inflammation, left ventricular (LV) dysfunction, and pulmonary remodeling were determined in male mice fed with either high Se diet or normal Se diet. High Se diet had no detectable effect on LV structure and function in mice under control conditions, but high Se diet significantly protected mice from TAC-induced LV hypertrophy, dysfunction, increase of lung weight, and right ventricular hypertrophy. As compared with mice treated with normal Se diet, high Se diet also reduced TAC-induced LV cardiomyocyte hypertrophy, fibrosis, leukocyte infiltration, pulmonary inflammation, pulmonary fibrosis, and pulmonary micro-vessel muscularization. In addition, high Se diet significantly ameliorated TAC-induced accumulation and activation of pulmonary F4/80+ macrophages, and activation of dendritic cells. Interestingly, high Se diet also significantly attenuated TAC-induced activation of pulmonary CD4+ and CD8+ T cells. Moreover, we found that TAC caused a significant increase in cardiac and pulmonary ROS production, increases of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), as well as a compensatory increases of LV glutathione peroxidase 1 (GPX1) and 4 (GPX4) in mice fed with normal Se diet. Above changes were diminished in mice fed with high Se diet. Collectively, these data demonstrated that high Se diet significantly attenuated systolic pressure overload-induced cardiac oxidative stress, inflammation, HF development, and consequent pulmonary inflammation and remodeling.
Collapse
Affiliation(s)
- Umesh Bhattarai
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Rui Xu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaochen He
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lihong Pan
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ziru Niu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Dongzhi Wang
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - John S Clemmer
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yingjie Chen
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.
| |
Collapse
|
2
|
Wang D, Weng X, Yue W, Shang L, Wei Y, Clemmer JS, Xu Y, Chen Y. CD8 T cells promote heart failure progression in mice with preexisting left ventricular dysfunction. Front Immunol 2024; 15:1472133. [PMID: 39324134 PMCID: PMC11422781 DOI: 10.3389/fimmu.2024.1472133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Even under the standard medical care, patients with left ventricular (LV) failure or heart failure (HF) often progress to pulmonary hypertension and right ventricular (RV) hypertrophy. We previously showed that inflammation and regulatory T cells (Tregs) modulate HF progression in mice with preexisting LV failure. The main objective of this study is to determine the role of CD8+ T cells in modulating LV failure and the consequent pulmonary inflammation and RV hypertrophy in mice with preexisting LV failure. Methods Mice with LV failure produced by transverse aortic constriction (TAC) were randomized to depletion of cytotoxic CD8+ T cells, Tregs, or both using specific blocking antibodies. Cardiac function, lung inflammation, fibrosis, vascular remodeling, and right ventricular remodeling were determined. Results LV failure caused pulmonary inflammation, fibrosis, vascular remodeling, and RV hypertrophy. Depletion of CD8+ T cells significantly attenuated above changes in mice with preexisting LV failure. LV failure was associated with increased CD4+ and CD8+ T cell activation, and increased ratios of activated T cells to Tregs. Treg depletion exacerbated lung inflammation and HF progression, as well as lung CD4+ and CD8+ T cell infiltration and activation in HF mice. However, CD8+ T cells depletion rescue these mice from exacerbated lung inflammation and RV hypertrophy after Treg depletion. Discussion Our findings demonstrate an important role of CD8+ T cells in promoting pulmonary inflammation and RV hypertrophy in mice with preexisting LV failure. Depletion of CD8+ T cells also rescued HF mice from the exacerbated HF progression by Treg depletion.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Cardiology, Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Wenhui Yue
- Department of Cardiology, Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Linlin Shang
- Department of Cardiology, Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yidong Wei
- Department of Cardiology, Tenth People’s Hospital, Tongji University, Shanghai, China
| | - John S. Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yawei Xu
- Department of Cardiology, Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
3
|
Lin QY, Yu WJ, Bai J, Jiang WX, Li HH. Mac-1 deficiency ameliorates pressure overloaded heart failure through inhibiting macrophage polarization and activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167048. [PMID: 38296117 DOI: 10.1016/j.bbadis.2024.167048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Public Health, Dalian Medical University, Dalian, China
| | - Wen-Xi Jiang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China.
| |
Collapse
|
4
|
Cho S, Dadson K, Sung HK, Ayansola O, Mirzaesmaeili A, Noskovicova N, Zhao Y, Cheung K, Radisic M, Hinz B, Sater AAA, Hsu HH, Lopaschuk GD, Sweeney G. Cardioprotection by the adiponectin receptor agonist ALY688 in a preclinical mouse model of heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2024; 171:116119. [PMID: 38181714 DOI: 10.1016/j.biopha.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1β, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1β, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nina Noskovicova
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada
| | - Yimu Zhao
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Krisco Cheung
- Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milica Radisic
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada; Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Ali A Abdul Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc. Bellevue, WA, USA
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
6
|
He X, Xu R, Pan L, Bhattarai U, Liu X, Zeng H, Chen JX, Hall ME, Chen Y. Inhibition of NK1.1 signaling attenuates pressure overload-induced heart failure, and consequent pulmonary inflammation and remodeling. Front Immunol 2023; 14:1215855. [PMID: 37554327 PMCID: PMC10405176 DOI: 10.3389/fimmu.2023.1215855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Background Inflammation contributes to heart failure (HF) development, the progression from left ventricular failure to pulmonary remodeling, and the consequent right ventricular hypertrophy and failure. NK1.1 plays a critical role in Natural killer (NK) and NK T (NKT) cells, but the role of NK1.1 in HF development and progression is unknown. Methods We studied the effects of NK1.1 inhibition on transverse aortic constriction (TAC)-induced cardiopulmonary inflammation, HF development, and HF progression in immunocompetent male mice of C57BL/6J background. Results We found that NK1.1+ cell-derived interferon gamma+ (IFN-γ+) was significantly increased in pulmonary tissues after HF. In addition, anti-NK1.1 antibodies simultaneously abolished both NK1.1+ cells, including the NK1.1+NK and NK1.1+NKT cells in peripheral blood, spleen, and lung tissues, but had no effect on cardiopulmonary structure and function under control conditions. However, systemic inhibition of NK1.1 signaling by anti-NK1.1 antibodies significantly rescued mice from TAC-induced left ventricular inflammation, fibrosis, and failure. Inhibition of NK1.1 signaling also significantly attenuated TAC-induced pulmonary leukocyte infiltration, fibrosis, vessel remodeling, and consequent right ventricular hypertrophy. Moreover, inhibition of NK1.1 signaling significantly reduced TAC-induced pulmonary macrophage and dendritic cell infiltration and activation. Conclusions Our data suggest that inhibition of NK1.1 signaling is effective in attenuating systolic overload-induced cardiac fibrosis, dysfunction, and consequent pulmonary remodeling in immunocompetent mice through modulating the cardiopulmonary inflammatory response.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Rui Xu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Lihong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Umesh Bhattarai
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Xiaoguang Liu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
- College of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Michael E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
- Department of Medicine, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, United States
| |
Collapse
|