1
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Sharma NS, Karan A, Tran HQ, John JV, Andrabi SM, Shatil Shahriar SM, Xie J. Decellularized extracellular matrix-decorated 3D nanofiber scaffolds enhance cellular responses and tissue regeneration. Acta Biomater 2024; 184:81-97. [PMID: 38908416 DOI: 10.1016/j.actbio.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The use of decellularized extracellular matrix products in tissue regeneration is quite alluring yet practically challenging due to the limitations of its availability, harsh processing techniques, and host rejection. Scaffolds obtained by either incorporating extracellular matrix (ECM) material or coating the surface can resolve these challenges to some extent. However, these scaffolds lack the complex 3D network formed by proteins and growth factors observed in natural ECM. This study introduces an approach utilizing 3D nanofiber scaffolds decorated with dECM to enhance cellular responses and promote tissue regeneration. Notably, the dECM can be customized according to specific cellular requirements, offering a tailored environment for enhanced therapeutic outcomes. Two types of 3D expanded scaffolds, namely radially aligned scaffolds (RAS) and laterally expanded scaffolds (LES) fabricated by the gas-foaming expansion were utilized. To demonstrate the proof-of-concept, human dermal fibroblasts (HDFs) seeded on these scaffolds for up to 8 weeks, resulted in uniform and highly aligned cells which deposited ECM on the scaffolds. These cellular components were then removed from the scaffolds through decellularization (e.g., SDS treatment and freeze-thaw cycles). The dECM-decorated 3D expanded nanofiber scaffolds can direct and support cell alignment and proliferation along the underlying fibers upon recellularization. An in vitro inflammation assay indicates that dECM-decorated LES induces a lower immune response than dECM-decorated RAS. Further, subcutaneous implantation of dECM-decorated RAS and LES shows higher cell infiltration and angiogenesis within 7 and 14 days than RAS and LES without dECM decoration. Taken together, dECM-decorated 3D expanded nanofiber scaffolds hold great potential in tissue regeneration and tissue modeling. STATEMENT OF SIGNIFICANCE: Decellularized ECM scaffolds have attained widespread attention in biomedical applications due to their intricate 3D framework of proteins and growth factors. Mimicking such a complicated architecture is a clinical challenge. In this study, we developed natural ECM-decorated 3D electrospun nanofiber scaffolds with controlled alignments to mimic human tissue. Fibroblasts were cultured on these scaffolds for 8 weeks to deposit natural ECM and decellularized by either freeze-thawing or detergent to obtain decellularized ECM scaffolds. These scaffolds were tested in both in-vitro and in-vivo conditions. They displayed higher cellular attributes with lower immune response making them a good grafting tool in tissue regeneration.
Collapse
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Huy Quang Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center Omaha, NE 68198, United States; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
3
|
Łuszczyński K, Soszyńska M, Komorowski M, Lewandowska P, Zdanowski R, Sobiepanek A, Brytan M, Malejczyk J, Lutyńska A, Ścieżyńska A. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells 2024; 13:1206. [PMID: 39056788 PMCID: PMC11274970 DOI: 10.3390/cells13141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are among the most abundant cell types in the human body, playing crucial roles in numerous physiological processes, including the structural maintenance of the dermis, production of extracellular matrix components, and mediation of inflammatory responses. Despite their importance, fibroblasts remain one of the least characterized cell populations. The advent of single-cell analysis techniques, particularly single-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting (FACS), has enabled detailed investigations into fibroblast biology. In this study, we present an extensive analysis of fibroblast surface markers suitable for cell sorting and subsequent functional studies. We reviewed over three thousand research articles describing fibroblast populations and their markers, characterizing and comparing subtypes based on their surface markers, as well as their intra- and extracellular proteins. Our detailed analysis identified a variety of distinct fibroblast subpopulations, each with unique markers, characteristics dependent on their location, and the physiological or pathophysiological environment. These findings underscore the diversity of fibroblasts as a cellular population and could lead to the development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Krzysztof Łuszczyński
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Michał Komorowski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Paulina Lewandowska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Marek Brytan
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Anna Lutyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Aneta Ścieżyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| |
Collapse
|
4
|
Kobayashi T, Yamashita A, Tsumaki N, Watanabe H. Subpopulations of fibroblasts derived from human iPS cells. Commun Biol 2024; 7:736. [PMID: 38890483 PMCID: PMC11189496 DOI: 10.1038/s42003-024-06419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Organ fibrosis causes collagen fiber overgrowth and impairs organ function. Cardiac fibrosis after myocardial infarction impairs cardiac function significantly, pulmonary fibrosis reduces gas exchange efficiency, and liver fibrosis disturbs the natural function of the liver. Its development is associated with the differentiation of fibroblasts into myofibroblasts and increased collagen synthesis. Fibrosis has organ specificity, defined by the heterogeneity of fibroblasts. Although this heterogeneity is established during embryonic development, it has not been defined yet. Fibroblastic differentiation of induced pluripotent stem cells (iPSCs) recapitulates the process by which fibroblasts acquire diversity. Here, we differentiated iPSCs into cardiac, hepatic, and dermal fibroblasts and analyzed their properties using single-cell RNA sequencing. We observed characteristic subpopulations with different ratios in each organ-type fibroblast group, which contained both resting and distinct ACTA2+ myofibroblasts. These findings provide crucial information on the ontogeny-based heterogeneity of fibroblasts, leading to the development of therapeutic strategies to control fibrosis.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Akihiro Yamashita
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan.
| |
Collapse
|
5
|
Chen Z, Debnath R, Chikelu I, Zhou JX, Ko KI. Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing. Mol Oral Microbiol 2024; 39:113-124. [PMID: 37902166 PMCID: PMC11058109 DOI: 10.1111/omi.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre+) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre+ fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre+ fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre+ fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.
Collapse
Affiliation(s)
- Zhaoxu Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ifeoma Chikelu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan X. Zhou
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation and Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Sanches BDA, Teófilo FBS, Brunet MY, Villapun VM, Man K, Rocha LC, Neto JP, Matsumoto MR, Maldarine JS, Ciena AP, Cox SC, Carvalho HF. Telocytes: current methods of research, challenges and future perspectives. Cell Tissue Res 2024; 396:141-155. [PMID: 38539007 DOI: 10.1007/s00441-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Francisco B S Teófilo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Victor M Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Lara C Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Marta R Matsumoto
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Matsumoto Y, Ikeda S, Kimura T, Ono K, Ashida N. Col1α2-Cre-mediated recombination occurs in various cell types due to Cre expression in epiblasts. Sci Rep 2023; 13:22483. [PMID: 38110549 PMCID: PMC10728165 DOI: 10.1038/s41598-023-50053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.
Collapse
Affiliation(s)
- Yuzuru Matsumoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Hirakata Kohsai Hospital, Osaka, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
10
|
Fazekas LA, Szabo B, Szegeczki V, Filler C, Varga A, Godo ZA, Toth G, Reglodi D, Juhasz T, Nemeth N. Impact Assessment of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Hemostatic Sponge on Vascular Anastomosis Regeneration in Rats. Int J Mol Sci 2023; 24:16695. [PMID: 38069018 PMCID: PMC10706260 DOI: 10.3390/ijms242316695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Collapse
Affiliation(s)
- Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Csaba Filler
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Zoltan Attila Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Kassai ut 26, H-4028 Debrecen, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dom ter 8, H-6720 Szeged, Hungary;
| | - Dora Reglodi
- HUN-REN-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary;
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| |
Collapse
|
11
|
Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol 2023; 14:1259515. [PMID: 37809065 PMCID: PMC10556469 DOI: 10.3389/fimmu.2023.1259515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The skin is exposed to environmental challenges and contains heterogeneous cell populations such as epithelial cells, stromal cells, and skin-resident immune cells. As the most abundant type of stromal cells, fibroblasts have been historically considered silent observers in the immune responses of the cutaneous epithelial immune microenvironment (EIME), with little research conducted on their heterogeneity and immune-related functions. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome the limitations of bulk RNA sequencing and help recognize the functional and spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of cells in the cutaneous EIME. Recently, emerging single-cell sequencing data have demonstrated that fibroblasts notably participate in the immune responses of the EIME and impact the initiation and progression of inflammatory skin diseases. Here, we summarize the latest advances in the role of fibroblasts in the cutaneous EIME of inflammatory skin diseases and discuss the distinct functions and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and non-fibrotic inflammatory skin diseases. This review help unveil the multiple roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic strategies for the management of inflammatory skin diseases by targeting fibroblasts or the fibroblast-centered EIME.
Collapse
Affiliation(s)
| | | | | | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|