1
|
Fauziah T, Esyanti RR, Meitha K, Iriawati, Hermawaty D, Intan Febrina Wijayanti GA. Cell cycle arrest via DNA Damage Response (DDR) pathway induced by extracellular self-DNA (esDNA) application in rice root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109370. [PMID: 39647227 DOI: 10.1016/j.plaphy.2024.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Conspecific plant growth is inhibited by extracellular fragments in a concentration-dependent manner. Although several reports have addressed this self-DNA inhibition, the underlying mechanism remains unclear. In this investigation, we evaluated the progression of cell cycle of rice roots in responding to extracellular-self DNA (esDNA). We analyzed root growth, hydrogen peroxide (H2O2) production, Catalase (CAT) and Ascorbate Peroxidase (APX) enzyme activities, DNA Damage Response (DDR)-related gene expression, and cell cycle progression. Our results suggest that esDNA-induced root growth inhibition on days 7 and 10 and might associated with cell cycle arrest initiated several hours after esDNA treatment. The esDNA-induced cell cycle arrest is facilitated through the DDR pathway, activated by DNA damage resulting from elevated reactive oxygen species (ROS) induced by esDNA. Specifically, esDNA upregulates DDR-related gene expression including OsATM (Oryza sativa ataxia telangiectasia mutated), OsATR (Oryza sativa ATM and Rad3-related), OsSOG1 (Oryza sativa SUPPRESSOR OF GAMMA RESPONSE 1), OsWEE1 (Oryza sativa WEE1-like kinase 1), and OsSMR4 (Oryza sativa SIAMESE-RELATED 4), leading to cell cycle arrest. Finally, we propose that cell cycle arrest might be a plausible explanation for the phenomenon of root growth inhibition by esDNA. This result highlights the significance of DDR signaling in the plant's response to esDNA. This finding will be helpful as initial information for developing green herbicides to control monocot weeds in agriculture.
Collapse
Affiliation(s)
- Tessa Fauziah
- Doctoral Program of Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia; Department of Agriculture, University of Singaperbangsa Karawang, Jl. HS.Ronggo Waluyo, Karawang, 41361, West Java, Indonesia.
| | - Rizkita Rachmi Esyanti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia.
| | - Dina Hermawaty
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia; Department of Biotechnology, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat No.Kav. 88, East Jakarta, 13210, Jakarta, Indonesia.
| | | |
Collapse
|
2
|
Lozano-Durán R. Viral Recognition and Evasion in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:655-677. [PMID: 39038248 DOI: 10.1146/annurev-arplant-060223-030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University Tübingen, Tübingen, Germany;
| |
Collapse
|
3
|
Tsivileva O, Shaternikov A, Evseeva N. Basidiomycetes Polysaccharides Regulate Growth and Antioxidant Defense System in Wheat. Int J Mol Sci 2024; 25:6877. [PMID: 38999986 PMCID: PMC11241571 DOI: 10.3390/ijms25136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Andrei Shaternikov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Nina Evseeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| |
Collapse
|
4
|
Vladejić J, Kovacik M, Zwyrtková J, Szurman-Zubrzycka M, Doležel J, Pecinka A. Zeocin-induced DNA damage response in barley and its dependence on ATR. Sci Rep 2024; 14:3119. [PMID: 38326519 PMCID: PMC10850495 DOI: 10.1038/s41598-024-53264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.
Collapse
Affiliation(s)
- Jovanka Vladejić
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia.
| |
Collapse
|