1
|
Morgan GJ, Nau AN, Wong S, Spencer BH, Shen Y, Hua A, Bullard MJ, Sanchorawala V, Prokaeva T. An updated AL-base reveals ranked enrichment of immunoglobulin light chain variable genes in AL amyloidosis. Amyloid 2024:1-10. [PMID: 39641756 DOI: 10.1080/13506129.2024.2434899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Each monoclonal antibody light chain associated with AL amyloidosis has a unique sequence. Defining how these sequences drive amyloid deposition could facilitate faster diagnosis and lead to new treatments. METHODS Light chain sequences are collected in the AL-Base repository. Monoclonal sequences from AL amyloidosis, multiple myeloma and the healthy polyclonal immune repertoire were compared to identify differences in precursor gene use, mutation frequency and physicochemical properties. RESULTS AL-Base now contains 2,200 monoclonal light chain sequences from AL amyloidosis and other plasma cell dyscrasias. Sixteen germline precursor genes were enriched in AL amyloidosis, relative to multiple myeloma and the polyclonal repertoire. Two genes, IGKV1-16 and IGLV1-36, were infrequently observed but highly enriched in AL amyloidosis. The number of mutations varied widely between light chains. AL-associated κ light chains harboured significantly more mutations compared to multiple myeloma and polyclonal sequences, whereas AL-associated λ light chains had fewer mutations. Machine learning tools designed to predict amyloid propensity were less accurate for new sequences than their original training data. CONCLUSIONS Rarely-observed light chain variable genes may carry a high risk of AL amyloidosis. New approaches are needed to define sequence-associated risk factors for AL amyloidosis. AL-Base is a foundational resource for such studies.
Collapse
Affiliation(s)
- Gareth J Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Allison N Nau
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brian H Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yun Shen
- Boston University Research Computing Services, Boston, MA, USA
| | - Axin Hua
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Matthew J Bullard
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Klimtchuk ES, Prokaeva T, Spencer BH, Wong S, Ghosh S, Urdaneta A, Morgan G, Wales TE, Gursky O. Conformational Differences in the Light Chain Constant Domain of Immunoglobulin G and Free Light Chain May Influence Proteolysis in AL Amyloidosis. J Mol Biol 2024; 436:168837. [PMID: 39490919 PMCID: PMC11636358 DOI: 10.1016/j.jmb.2024.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Immunoglobulin light chain amyloidosis (AL) is a life-threatening disease caused by the deposition of light chain (LC) and its fragments containing variable (VL) and portions of constant (CL) domains. AL patients feature either monoclonal free LCs (FLCs) circulating as covalent and noncovalent homodimers, or monoclonal immunoglobulin (Ig) wherein the LC and heavy chain (HC) form disulfide-linked heterodimers, or both. The role of full-length Ig in AL amyloidosis is unclear as prior studies focused on FLC or VL domain. We used a mammalian cell-based expression system to generate four AL patient-derived full-length IgGs, two non-AL IgG controls, and six corresponding FLC proteins derived from an IGLV6-57 germline precursor. Comparison of proteins' secondary structure, thermal stability, proteolytic susceptibility, and disulfide link reduction suggested the importance of local vs. global conformational stability. Analysis of IgGs vs. corresponding FLCs using hydrogen-deuterium exchange mass spectrometry revealed major differences in the local conformation/dynamics of the CL domain. In all IgGs vs. FLCs, segments containing β-strand and α-helix βAC-αACBC were more dynamic/exposed while segment βDC-βEC was less dynamic/exposed. Notably, these segments overlapped proteolysis-prone regions whose in vivo cleavage generates LC fragments found in AL deposits. Altogether, the results suggest that preferential cleavage in segments βAC-αACBC of FLC or βDC-βEC of LC in IgG helps generate amyloid protein precursors. We propose that protecting these segments using small-molecule stabilizers, which bind to the interfacial cavities CL-CL in FLC and/or CL-CH1 in IgG, is a potential therapeutic strategy to complement current approaches targeting VL-VL or VL-CL stabilization of LC dimer.
Collapse
Affiliation(s)
- Elena S Klimtchuk
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, United States.
| | - Tatiana Prokaeva
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, United States; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, United States.
| | - Brian H Spencer
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, United States.
| | - Sherry Wong
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, United States.
| | - Shreya Ghosh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA 02118, United States.
| | - Gareth Morgan
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, United States.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA 02118, United States.
| |
Collapse
|
3
|
Morgan GJ, Yung Z, Spencer BH, Sanchorawala V, Prokaeva T. Predicting Structural Consequences of Antibody Light Chain N-Glycosylation in AL Amyloidosis. Pharmaceuticals (Basel) 2024; 17:1542. [PMID: 39598451 PMCID: PMC11597191 DOI: 10.3390/ph17111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient's unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent in amyloid-associated light chains than in light chains from the normal immune repertoire. However, the mechanisms underlying this association are unknown. Here, we investigate the frequency and position within the light chain sequence of the N-glycosylation sequence motif, or sequon. Methods: Monoclonal light chains from AL amyloidosis and multiple myeloma were identified from the AL-Base repository. Polyclonal light chains were obtained from the Observed Antibody Space resource. We compared the fraction of light chains from each group harboring an N-glycosylation sequon, and the positions of these sequons within the sequences. Results: Sequons are enriched among AL-associated light chains derived from a subset of precursor germline genes. Sequons are observed at multiple positions, which differ between the two types of light chains, κ and λ, but are similar between light chains from AL amyloidosis and multiple myeloma. Positions of sequons map to residues with surface-exposed sidechains that are compatible with the folded structures of light chains. Within the known structures of λ AL amyloid fibrils, many residues where sequons are observed are buried, inconsistent with N-glycosylation. Conclusions: There is no clear structural rationale for why N-glycosylation of κ light chains is associated with AL amyloidosis. A better understanding of the roles of N-glycosylation in AL amyloidosis is required before it can be used as a marker for disease risk.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zach Yung
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Morgan G, Nau AN, Wong S, Spencer BH, Shen Y, Hua A, Bullard MJ, Sanchorawala V, Prokaeva T. An updated AL-Base reveals ranked enrichment of immunoglobulin light chain variable genes in AL amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612490. [PMID: 39314448 PMCID: PMC11419035 DOI: 10.1101/2024.09.11.612490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Each monoclonal antibody light chain associated with AL amyloidosis has a unique sequence. Defining how these sequences lead to amyloid deposition could facilitate faster diagnosis and lead to new treatments. Methods Light chain sequences are collected in the Boston University AL-Base repository. Monoclonal sequences from AL amyloidosis, multiple myeloma and the healthy polyclonal immune repertoire were compared to identify differences in precursor gene use, mutation frequency and physicochemical properties. Results AL-Base now contains 2,193 monoclonal light chain sequences from plasma cell dyscrasias. Sixteen germline precursor genes were enriched in AL amyloidosis, relative to multiple myeloma and the polyclonal repertoire. Two genes, IGKV1-16 and IGLV1-36, were infrequently observed but highly enriched in AL amyloidosis. The number of mutations varied widely between light chains. AL-associated κ light chains harbored significantly more mutations compared to multiple myeloma and polyclonal sequences, whereas AL-associated λ light chains had fewer mutations. Machine learning tools designed to predict amyloid propensity were less accurate for new sequences than their original training data. Conclusions Rarely-observed light chain variable genes may carry a high risk of AL amyloidosis. New approaches are needed to define sequence-associated risk factors for AL amyloidosis. AL-Base is a foundational resource for such studies.
Collapse
Affiliation(s)
- Gareth Morgan
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Allison N. Nau
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Sherry Wong
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Brian H. Spencer
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Yun Shen
- Boston University Research Computing Services, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Axin Hua
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Matthew J. Bullard
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Vaishali Sanchorawala
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| | - Tatiana Prokaeva
- Boston University Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, 72 E. Concord St, Boston, MA 02118, USA
| |
Collapse
|
5
|
Schulte T, Chaves-Sanjuan A, Speranzini V, Sicking K, Milazzo M, Mazzini G, Rognoni P, Caminito S, Milani P, Marabelli C, Corbelli A, Diomede L, Fiordaliso F, Anastasia L, Pappone C, Merlini G, Bolognesi M, Nuvolone M, Fernández-Busnadiego R, Palladini G, Ricagno S. Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis. Nat Commun 2024; 15:6359. [PMID: 39069558 PMCID: PMC11284220 DOI: 10.1038/s41467-024-50686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Systemic light chain (LC) amyloidosis (AL) is a disease where organs are damaged by an overload of a misfolded patient-specific antibody-derived LC, secreted by an abnormal B cell clone. The high LC concentration in the blood leads to amyloid deposition at organ sites. Indeed, cryogenic electron microscopy (cryo-EM) has revealed unique amyloid folds for heart-derived fibrils taken from different patients. Here, we present the cryo-EM structure of heart-derived AL amyloid (AL59) from another patient with severe cardiac involvement. The double-layered structure displays a u-shaped core that is closed by a β-arc lid and extended by a straight tail. Noteworthy, the fibril harbours an extended constant domain fragment, thus ruling out the variable domain as sole amyloid building block. Surprisingly, the fibrils were abundantly concatenated with a proteinaceous polymer, here identified as collagen VI (COLVI) by immuno-electron microscopy (IEM) and mass-spectrometry. Cryogenic electron tomography (cryo-ET) showed how COLVI wraps around the amyloid forming a helical superstructure, likely stabilizing and protecting the fibrils from clearance. Thus, here we report structural evidence of interactions between amyloid and collagen, potentially signifying a distinct pathophysiological mechanism of amyloid deposits.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | | | - Valentina Speranzini
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Melissa Milazzo
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Chiara Marabelli
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan, 20097, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy.
| |
Collapse
|
6
|
Karimi-Farsijani S, Pfeiffer PB, Banerjee S, Baur J, Kuhn L, Kupfer N, Hegenbart U, Schönland SO, Wiese S, Haupt C, Schmidt M, Fändrich M. Light chain mutations contribute to defining the fibril morphology in systemic AL amyloidosis. Nat Commun 2024; 15:5121. [PMID: 38879609 PMCID: PMC11180120 DOI: 10.1038/s41467-024-49520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Systemic AL amyloidosis is one of the most frequently diagnosed forms of systemic amyloidosis. It arises from mutational changes in immunoglobulin light chains. To explore whether these mutations may affect the structure of the formed fibrils, we determine and compare the fibril structures from several patients with cardiac AL amyloidosis. All patients are affected by light chains that contain an IGLV3-19 gene segment, and the deposited fibrils differ by the mutations within this common germ line background. Using cryo-electron microscopy, we here find different fibril structures in each patient. These data establish that the mutations of amyloidogenic light chains contribute to defining the fibril architecture and hence the structure of the pathogenic agent.
Collapse
Affiliation(s)
| | | | | | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Niklas Kupfer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medicinal Department V, Amyloidosis Centre, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Lavatelli F, Natalello A, Marchese L, Ami D, Corazza A, Raimondi S, Mimmi MC, Malinverni S, Mangione PP, Palmer MT, Lampis A, Concardi M, Verona G, Canetti D, Arbustini E, Bellotti V, Giorgetti S. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. J Biol Chem 2024; 300:107174. [PMID: 38499153 PMCID: PMC11016911 DOI: 10.1016/j.jbc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Loredana Marchese
- Pathology Unit, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy; Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Maria Chiara Mimmi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Malinverni
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Manel Terrones Palmer
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessio Lampis
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Monica Concardi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Bellotti
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|