1
|
Wang Z, Cheng L, Li G, Cheng H. Development of immune-derived molecular markers for preeclampsia based on multiple machine learning algorithms. Sci Rep 2025; 15:1767. [PMID: 39815029 PMCID: PMC11736010 DOI: 10.1038/s41598-025-86442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R. Differential expression analysis was performed using the DESeq2 and limma packages, followed by analysis of variance to identify immune-related differentially expressed genes (DEGs). Several machine learning algorithms, including least absolute shrinkage and selection operator (LASSO), bagged trees, and random forest (RF), were used to select immune-related signaling genes closely associated with the occurrence of PE. Our analysis identified 34 immune source-related DEGs. Using the identified PE- and immune source-related genes, we constructed a diagnostic forecasting model employing several ML algorithms. We identified six types of statistically significant immune cells in patients with PE and discovered a strong relationship between biomarkers and immune cells. Moreover, the immune-derived hub genes for PE exhibited strong binding capabilities with drugs, such as alitretinoin, tretinoin, and acitretin. This study presents a robust prediction model for PE that integrates multiple machine learning-derived immune-related biomarkers. Our results indicate that these biomarkers may outperform previously reported molecular signatures in predicting PE and provide insights into the mechanisms underlying immune dysregulation in PE. Further validation in larger cohorts could lead to their clinical application in PE prediction and treatment.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Pediatric Surgery, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Long Cheng
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Guanghui Li
- Department of Vascular Surgery, First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Huiyan Cheng
- Department of Gynecology and Obstetrics, First Hospital of Jilin University, Changchun, 130031, Jilin, China.
| |
Collapse
|
2
|
Chen T, Yang W, Dong R, Yao H, Sun M, Wang J, Zhou Q, Xu J. The effect and application of adiponectin in hepatic fibrosis. Gastroenterol Rep (Oxf) 2024; 12:goae108. [PMID: 39737222 PMCID: PMC11683834 DOI: 10.1093/gastro/goae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatic fibrosis, a degenerative liver lesion, significantly contributes to the deterioration and mortality among patients with chronic liver diseases. The condition arises from various factors including toxins, such as alcohol, infections like different types of viral hepatitis, and metabolic diseases. Currently, there are no effective treatments available for liver fibrosis. Recent research has shown that adiponectin (ADPN) exhibits inhibitory effects on hepatic fibrosis. ADPN, an adipocytokine secreted by mature adipocytes, features receptors that are widely distributed across multiple tissues, especially the liver. In the liver, direct effects of ADPN on liver fibrosis include reducing inflammation and regulating hepatic stellate cell proliferation and migration. And its indirect effects include alleviating hepatic endoplasmic reticulum stress and reducing inflammation in hepatic lobules, thereby mitigating hepatic fibrosis. This review aims to elucidate the regulatory role of ADPN in liver fibrosis, explore how ADPN and its receptors alleviate endoplasmic reticulum stress, summarize ADPN detection methods, and discuss its potential as a novel marker and therapeutic agent in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Taoran Chen
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wenjing Yang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Rongrong Dong
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Han Yao
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Miao Sun
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiaxin Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
3
|
Zhang L, Lin Y, Zhang Z, Chen Y, Zhong J. Immune regulation and organ damage link adiponectin to sepsis. Front Immunol 2024; 15:1444884. [PMID: 39664383 PMCID: PMC11632310 DOI: 10.3389/fimmu.2024.1444884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction, resulting from an uncontrolled or abnormal immune response to infection, which leads to septicemia. It involves a disruption of immune homeostasis, marked by the release of Inflammatory factors and dysfunction of immune cells. Adiponectin is widely recognized as an anti-inflammatory mediator, playing a crucial role in regulating immune cell function and exerting protective effects on tissues and organs. However, the physiological role of adiponectin in septicemia remains unclear due to the condition's association with immune response dysregulation and organ damage. This study focuses on the potential relationship between adiponectin and excessive immune responses, along with organ injury in septicemia. Additionally, we investigate possible explanations for the observed discrepancies in adiponectin levels among critically ill or deceased patients compared to theoretical expectations, aiming to provide valuable insights for clinical diagnostics and therapeutic interventions in sepsis.
Collapse
Affiliation(s)
| | | | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | | | | |
Collapse
|
4
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
5
|
Husejko J, Gackowski M, Wojtasik J, Strzała D, Pesta M, Mądra-Gackowska K, Nuszkiewicz J, Woźniak A, Kozakiewicz M, Kędziora-Kornatowska K. Preliminary Report on the Influence of Acute Inflammation on Adiponectin Levels in Older Inpatients with Different Nutritional Status. Int J Mol Sci 2024; 25:2016. [PMID: 38396693 PMCID: PMC10889142 DOI: 10.3390/ijms25042016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammation can be triggered by a variety of factors, including pathogens, damaged cells, and toxic compounds. It is a biological response of the immune system, which can be successfully assessed in clinical practice using some molecular substances. Because adiponectin, a hormone released by adipose tissue, influences the development of inflammation, its evaluation as a potential measure of inflammation in clinical practice is justified. In the present contribution, statistical comparison of adiponectin concentration and selected molecular substances recognized in clinical practice as measures of inflammation were utilized to demonstrate whether adipose tissue hormones, as exemplified by adiponectin, have the potential to act as a measure of rapidly changing inflammation when monitoring older hospitalized patients in the course of bacterial infection. The study showed no statistically significant differences in adiponectin levels depending on the rapidly changing inflammatory response in its early stage. Interestingly, the concentration of adiponectin is statistically significantly higher in malnourished patients than in people with normal nutritional levels, assessed based on the MNA. According to the results obtained, adiponectin is not an effective measure of acute inflammation in clinical practice. However, it may serve as a biomarker of malnutrition in senile individuals.
Collapse
Affiliation(s)
- Jakub Husejko
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland;
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 Street, 87-100 Toruń, Poland;
| | - Dominika Strzała
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Maciej Pesta
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Faculty of Health Science, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowska-Curie 9 Street, 85-094 Bydgoszcz, Poland; (J.H.); (D.S.); (M.P.); (K.M.-G.); (M.K.); (K.K.-K.)
| |
Collapse
|