1
|
Batin Rahaman SK, Nandi SK, Mandal SK, Debnath U. Structural Diversity and Mutational Challenges of Toll-Like Receptor 4 Antagonists as Inflammatory Pathway Blocker. Drug Dev Res 2025; 86:e70031. [PMID: 39690962 DOI: 10.1002/ddr.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator that activates bacterial inflammation through its signaling pathway. It binds lipopolysaccharide (LPS) in the presence of myeloid differentiation protein 2 (MD2) to dimerise the TLR4-MD2-LPS complex. The TLR4 mediated signaling pathway stimulates cytokine production in humans, initiating inflammatory responses. Overactivation of the TLR4 pathway can trigger binding of LPS to the TLR4-MD2 complex, which may lead to the development of several inflammatory disorders. Therefore, the TLR4-MD2 complex is a potential therapeutic target for the identification of new and effective anti-inflammatory agents. Various biologically active TLR4 and MD2 targeting natural and synthetic molecules are explored with anti-inflammatory activity in micromolar ranges. But no FDA-approved drugs are available in the market as of now, and some are discontinued in clinical trials due to drug resistance and severe side effects. In this review, we have assessed recent molecular advancements in TLR4-MD2 antagonists which are showing direct inhibition in lower micro and nanomolar levels. Along with it, protein informatics analysis of the binding pockets of wild type and mutated TLR4-MD2 proteins are also discussed here to give a new insight about the changes in physicochemical properties of the ligand binding area. We have also pointed out several important residues in three different sites of the large LPS binding pocket of TLR4-MD2 complex to understand probable binding affinity of small molecule inhibitors (SMIs). In addition, the present status of clinical trials for TLR4 antagonists is also reviewed. The current assessment will pave a future perspective to design different small molecules as a direct inhibitor of TLR4-MD2 complex for anti-inflammatory activities.
Collapse
Affiliation(s)
- S K Batin Rahaman
- Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India
| | - Sandip K Nandi
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa, India
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
| | - Utsab Debnath
- Department of Pharmaceutical Science, School of Health Science and Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Chen L, Wang D, Liu W, Zhou S, Gu Q, Zhou T. Immunomodulation of exopolysaccharide produced by Lacticaseibacillus rhamnosus ZFM216 in cyclophosphamide-induced immunosuppressed mice by modulating gut microbiota. Int J Biol Macromol 2024; 283:137619. [PMID: 39551322 DOI: 10.1016/j.ijbiomac.2024.137619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
This study investigated the immunoregulatory activity of exopolysaccharides (EPS) produced by Lacticaseibacillus rhamnosus ZFM216 in immunosuppressed mice induced by cyclophosphamide (CTX). The results showed that EPS treatment effectively improved the body weight, immune organ index and splenic lymphocyte proliferation. EPS also mitigated the damage of immune organs, restored intestinal morphology, and regulated the levels of serum hemolysin and cytokines (e.g. TNF-α, INF-γ and IL-10). EPS promoted the release of NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 cells, however, such effect was inhibited in the presence of inhibitors of TLR4 and MAPKs signaling pathways-related proteins, confirming that EPS achieved the immunomodulation by activating these two signaling pathways. Additionally, EPS, as a prebiotic, effectively improved the diversity of microbial communities, regulated the relative abundance of dominant microbial communities, restored CTX-induced gut microbiota dysbiosis, and promoted the production of short chain fatty acids (SCFAs) in the gut of mice. Thus, immunoregulatory effect of EPS could be attributed to its good ability to modulate the gut microbiota. EPS produced by L. rhamnosus ZFM216 has promising application as an ingredient of functional foods due to its potent probiotic effect.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Dong Wang
- Zhejiang Chemtrue Bio-Pharm Co., Ltd. Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
3
|
Fu L, Zheng X, Luo J, Zhang Y, Gao X, Jin L, Liu W, Zhang C, Gao D, Xu B, Jiang Q, Chou S, Luo L. Machine learning accelerates the discovery of epitope-based dual-bioactive peptides against skin infections. Int J Antimicrob Agents 2024; 64:107371. [PMID: 39486466 DOI: 10.1016/j.ijantimicag.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Skin injuries and infections are an inevitable part of daily human life, particularly with chronic wounds, becoming an increasing socioeconomic burden. In treating skin infections and promoting wound healing, bioactive peptides may hold significant potential, particularly those possessing antimicrobial and anti-inflammatory properties. However, obtaining these peptides solely through traditional wet laboratory experiments is costly and time-consuming, and peptides identified by current computer-assisted predictive models largely lack validation of their effects via wet laboratory experiments. Consequently, this study aimed to integrate computer-assisted methods and traditional wet laboratory experiments to identify anti-inflammatory and antimicrobial peptides. METHODS We developed a computer-assisted mining pipeline to screen potential peptides from the epitopes of the major histocompatibility complex class II. RESULTS The peptide AIMP1 was identified, with the ability to physically damage Escherichia coli by increasing bacterial cell membrane permeability, and with the ability to inhibit inflammation by binding to endotoxin-lipopolysaccharide. Additionally, in an LPS-induced inflammation animal model, AIMP1 slightly increased levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and in a skin wound infection animal model, AIMP1 effectively accelerated healing, reduced levels of these pro-inflammatory cytokines, and showed no acute hepatotoxicity or nephrotoxicity. CONCLUSIONS In conclusion, this study not only developed a computer-assisted mining pipeline for identifying anti-inflammatory and antimicrobial peptides but also successfully pinpointed the peptide AIMP1, demonstrating its therapeutic potential for skin injury treatment.
Collapse
Affiliation(s)
- Le Fu
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Xu Zheng
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Jiawen Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Yiyu Zhang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Xue Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Li Jin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Wenting Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Chaoqun Zhang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Dongyu Gao
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Bocheng Xu
- Hangzhou Shenji Technology Co. Ltd, Hangzhou, PR China
| | - Qingru Jiang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China.
| | - Shuli Chou
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
4
|
Li X, Toyomoto T, Zhang T, Guo C, Lindahl S, Tsutsuki H, Xian M, Sawa T. Supersulphides suppress type-I and type-II interferon responses by blocking JAK/STAT signalling in macrophages. Int Immunol 2024; 36:641-652. [PMID: 38899915 DOI: 10.1093/intimm/dxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024] Open
Abstract
Interferons (IFNs) are cytokines produced and secreted by immune cells when viruses, tumour cells, and so forth, invade the body. Their biological effects are diverse, including antiviral, cell growth-inhibiting, and antitumour effects. The main subclasses of IFNs include type-I (e.g. IFN-α and IFN-β) and type-II (IFN-γ), which activate intracellular signals by binding to type-I and type-II IFN receptors, respectively. We have previously shown that when macrophages are treated with supersulphide donors, which have polysulphide structures in which three or more sulphur atoms are linked within the molecules, IFN-β-induced cellular responses, including signal transducer and activator of transcription 1 (STAT1) phosphorylation and inducible nitric oxide synthase (iNOS) expression, were strongly suppressed. However, the subfamily specificity of the suppression of IFN signals by supersulphides and the mechanism of this suppression are unknown. This study demonstrated that supersulphide donor N-acetyl-L-cysteine tetrasulphide (NAC-S2) can inhibit IFN signalling in macrophages stimulated not only with IFN-α/β but also with IFN-γ. Our data suggest that NAC-S2 blocks phosphorylation of Janus kinases (JAKs), thereby contributing to the inhibition of phosphorylation of STAT1. Under the current experimental conditions, the hydrogen sulphide (H2S) donor NaHS failed to inhibit IFN signalling. Similar to NAC-S2, the carbohydrate-based supersulphide donor thioglucose tetrasulphide (TGS4) was capable of strongly inhibiting tumour necrosis factor-α production, iNOS expression, and nitric oxide production from macrophages stimulated with lipopolysaccharide. Further understanding of the molecular mechanisms by which supersulphide donors exhibit their inhibitory actions towards JAK/STAT signalling is a necessary basis for the development of supersulphide-based therapeutic strategy against autoimmune disorders with dysregulated IFN signalling.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Biobank center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Chunyu Guo
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Stephen Lindahl
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
5
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
6
|
Qin S, Bie F, Chen S, Xu Y, Chen L, Shu B, Yang F, Lu Y, Li J, Zhao J. Targeting S100A12 to Improve Angiogenesis and Accelerate Diabetic Wound Healing. Inflammation 2024:10.1007/s10753-024-02073-8. [PMID: 38954262 DOI: 10.1007/s10753-024-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
Long-term inflammation and impaired angiogenesis are thought to be the causes of delayed healing or nonhealing of diabetic wounds. S100A12 is an essential pro-inflammatory factor involved in inflammatory reactions and serves as a biomarker for various inflammatory diseases. However, whether high level of S100A12 exists in and affects the healing of diabetic wounds, as well as the underlying molecular mechanisms, remain unclear. In this study, we found that the serum concentration of S100A12 is significantly elevated in patients with type 2 diabetes. Exposure of stratified epidermal cells to high glucose environment led to increased expression and secretion of S100A12, resulting in impaired endothelial function by binding to the advanced glycation endproducts (RAGE) or Toll-like receptor 4 (TLR4) on endothelial cell. The transcription factor Krüpple-like Factor 5 (KLF5) is highly expressed in the epidermis under high glucose conditions, activating the transcriptional activity of the S100A12 and boost its expression. By establishing diabetic wounds model in alloxan-induced diabetic rabbit, we found that local inhibition of S100A12 significantly accelerated diabetic wound healing by promoting angiogenesis. Our results illustrated the novel endothelial-specific injury function of S100A12 in diabetic wounds and suggest that S100A12 is a potential target for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Shitian Qin
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Fan Bie
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Shuying Chen
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Yingbin Xu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Lei Chen
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Bin Shu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Fan Yang
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Yangzhou Lu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Jialin Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Jingling Zhao
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong Province, 510080, PR China.
| |
Collapse
|
7
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Zhang Y, Feng Y, Zhou S, Gao S, Xiong B, Gao X, Song Y, Liu L, Wang C, Yang Y. Establishment of a model of LPS-induced inflammatory injury in human aortic endothelial cells. Biomed Pharmacother 2024; 174:116576. [PMID: 38593707 DOI: 10.1016/j.biopha.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
PURPOSE We aim to establish an LPS-induced human aortic endothelial cells (HAECs) inflammatory injury model and explore the optimal conditions for inducing its injury. We expect to provide modeling references for the related experiments of vascular inflammatory diseases. METHODS HAECs were cultured in vitro and treated with different concentrations of lipopolysaccharide (LPS) (0.1, 1, 10, 50, 100 μg/mL) for 6, 12, and 24 h to establish the HAECs inflammatory injury model. The cell viability was determined by CCK-8 assay; the expression levels of inflammatory cytokines in the cells were detected by RT-PCR;the apoptosis rate of the cells was detected by flow cytometry. RESULTS ① Within 24 h of LPS treatment, the cell viability of the 0.1 and 1 μg/mL groups showed an overall increasing trend with time, while the cell viability of the 10, 50, and 100 μg/mL groups increased first and then decreased with time, and the cell viability of 50 and 100 μg/mL groups was significantly lower than the normal control group at 24 h (P<0.01). ② RT-PCR results showed that after 50 and 100 μg/mL LPS for 24 h, the inflammatory cytokines all showed an apparent upward trend compared with the normal control group (P<0.05), which was more significant in the 100 μg/mL group. ③ After 100 μg/mL LPS for 24 h, the apoptotic necrosis rate of HAECs was higher than the normal control group (P<0.01). CONCLUSIONS This experiment successfully established a HAECs injury model, indicating that the optimal conditions for inducing injury are an LPS concentration of 100 μg/mL and a treatment time of 24 h.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yudi Feng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Suoni Zhou
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuochen Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Xiong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xueyan Gao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Song
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Ying Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
9
|
Cheng R, Zhou C, Zhao M, Zhang S, Wan W, Yu Y, Wen B, Jiao J, Xiong X, Xu Q, OuYang X. TRIM56-mediated production of type I interferon inhibits intracellular replication of Rickettsia rickettsii. Microbiol Spectr 2024; 12:e0369523. [PMID: 38358243 PMCID: PMC10986528 DOI: 10.1128/spectrum.03695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-β. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-β production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Ruxi Cheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|