1
|
Mohamed Thaha UAB, Wan Mohamad WM, Nik Husain NR, Yusop N, Mohamud R, Wan Ghazali WS. Potential and limitations of IL-37, a cytokine targeted for therapy of systemic lupus erythematosus: A Systematic Review. Int Immunopharmacol 2025; 144:113597. [PMID: 39566387 DOI: 10.1016/j.intimp.2024.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated immune responses and inflammation. Interleukin-37 (IL-37) is a recently discovered immunomodulatory cytokine with potential anti-inflammatory properties. This systematic review explores the relationship between IL and 37 and SLE disease activity, and evaluates its potential as a therapeutic agent. METHODS Electronic databases were searched for studies investigating IL-37 and SLE. Data on IL-37 levels, SLE Disease Activity Index (SLEDAI) score, genetic polymorphisms, and its therapeutic effects from pre-clinical studies were extracted. RESULTS Previous studies presented conflicting findings on IL-37 levels in SLE patients. Some reported positive correlations with disease activity, while others observed associations between lower IL-37 and increased activity. Genetic variations in the IL-37 gene linked to SLE susceptibility have been reported. Pre-clinical studies using engineered mesenchymal stem cells or direct IL-37 treatment showed promise in reducing disease severity in mouse models and cell cultures of SLE. The analysis of multiple studies reveals that IL-37 expression varies significantly across different SLE subtypes. CONCLUSIONS While a potential link exists between IL and 37 and disease activity, genetic predisposition, and therapeutic benefit, further research is needed. Future studies with standardized designs, larger and more diverse populations, and mechanistic investigations are crucial to determine the therapeutic potential of IL-37 for SLE. This review highlights the need for well-designed clinical trials to evaluate the safety and efficacy of IL-37 therapy in patients with SLE.
Collapse
Affiliation(s)
- Ummul Aqeela Balqees Mohamed Thaha
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Majdiah Wan Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | - Norhayati Yusop
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
2
|
Wang Q, Zhang G, An C, Hambly BD, Bao S. The role of IL-37 in gastrointestinal diseases. Front Immunol 2024; 15:1431495. [PMID: 39206201 PMCID: PMC11349528 DOI: 10.3389/fimmu.2024.1431495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal mucosal surface is frequently under challenge due to it's the large surface area and most common entry of microbes. IL-37, an anti-inflammatory cytokine, regulates local and systemic host immunity. H. pylori infection leads to the inhibition of IL-37 in the gastric mucosa, contributing to heightened mucosal inflammation and destruction, thereby facilitating increased proliferation of H. pylori. Food allergy, due to immune dysregulation, also contribute to GI injury. On the other hand, elevated levels of IL-37 observed in gastric cancer patients align with reduced host immunity at the cellular and humoral levels, indicating that IL-37 may contribute to the development of gastric cancer via suppressing pro-inflammatory responses. While IL-37 provides protection in an IBD animal model, the detection of highly produced IL-37 in IBD patients suggests a stage-dependent role, being protective in acute inflammation but potentially exacerbates the development of IBD in chronic conditions. Moreover, elevated colonic IL-37 in CRC correlates with overall survival time and disease time, indicating a protective role for IL-37 in CRC. The differential regulation and expression of IL-37 between upper- and lower-GI organs may be attributed to variations in the microbial flora. This information suggests that IL-37 could be a potential therapeutic agent, depending on the stage and location.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guangrun Zhang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caiping An
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Brett D. Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Foreign Affairs Office, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
- Foreign Affairs Office, The First People’s Hospital of Baiyin, Baiyin, China
| |
Collapse
|
3
|
do Amaral JB, Peron KA, Soeiro TLT, Scott MCP, Hortense FTP, da Silva MD, França CN, Nali LHDS, Bachi ALL, de Oliveira Penido N. The inflammatory and metabolic status of patients with sudden-onset sensorineural hearing loss. Front Neurol 2024; 15:1382096. [PMID: 39015324 PMCID: PMC11250376 DOI: 10.3389/fneur.2024.1382096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Sudden sensorineural hearing loss (SSNHL) is a common emergency symptom in otolaryngology that requires immediate diagnosis and treatment. SSNHL has a multifactorial etiology, and its pathophysiologic mechanisms may be associated with inflammatory and metabolic changes that may affect the cochlear microenvironment or its nervous component, thus triggering the process or hindering hearing recovery. Therefore, the aim of this study was to assess metabolic and inflammatory changes to identify systemic parameters that could serve as prognostic factors for hearing recovery in patients with SSNHL. Materials and methods Thirty patients with a sudden hearing loss of at least 30 dB in three contiguous frequencies were enrolled in this study. Patients were followed up for 4 months and peripheral blood samples were collected at 7 days (V1), 30 days (V2) and 120 days (V3). Interleukins (IL)-1F7, IL-2, IL-4, IL-5, IL-6, IL-10, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and adiponectin were quantified in serum. In addition, lipid and glycemic profiles as well as concentration of creatinine, uric acid, fructosamine, peroxide, total proteins and albumin were analyzed. Patients underwent weekly ear-specific hearing tests with standard pure tone thresholds for frequencies of 250-8,000 Hz, speech recognition threshold and word recognition score. Results Patients with SSNHL were divided into a group of patients who did not achieve hearing recovery (n = 14) and another group who achieved complete and significant recovery (n = 16). Most serologic parameters showed no significant changes or values indicating clinical changes. However, IFN-γ levels decreased by 36.3% between V1 and V2. The cytokine TNF-α showed a statistically significant decrease from V1 to V3 (from 22.91 to 10.34 pg./mL). Adiponectin showed a decrease from 553.7 ng/mL in V1 to 454.4 ng/mL in V3. Discussion Our results show that serologic cytokine levels change in the acute phase of manifestation of SSNHL and establish a parallel between systemic changes and improvements in hearing, especially TNF-α, which showed differences in hearing recovery. The use of IFN-γ, TNF-α and adiponectin may elucidate the clinical improvement in these patients.
Collapse
Affiliation(s)
- Jônatas Bussador do Amaral
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Kelly Abdo Peron
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Tracy Lima Tavares Soeiro
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marina Cançado Passarelli Scott
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Flávia Tatiana Pedrolo Hortense
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| | | | | | - Norma de Oliveira Penido
- ENT Research Lab, Department of Otorhinolaryngology—Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Xu Y, Wang JY, Zou Y, Ma XW, Meng T. Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review. J Inflamm Res 2024; 17:4001-4016. [PMID: 38915806 PMCID: PMC11195677 DOI: 10.2147/jir.s474879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.
Collapse
Affiliation(s)
- Yuan Xu
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Jing-Yan Wang
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Yang Zou
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Xue-Wei Ma
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Tian Meng
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| |
Collapse
|
5
|
Li JM, Lin N, Zhang Y, Chen X, Liu Z, Lu R, Bian F, Liu H, Pflugfelder SC, Li DQ. Ectoine protects corneal epithelial survival and barrier from hyperosmotic stress by promoting anti-inflammatory cytokine IL-37. Ocul Surf 2024; 32:182-191. [PMID: 38490477 DOI: 10.1016/j.jtos.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE To explore novel role and molecular mechanism of a natural osmoprotectant ectoine in protecting corneal epithelial cell survival and barrier from hyperosmotic stress. METHODS Primary human corneal epithelial cells (HCECs) were established from donor limbus. The confluent cultures in isosmolar medium were switched to hyperosmotic media (400-500 mOsM), with or without ectoine or rhIL-37 for different time periods. Cell viability and proliferation were evaluated by MTT or WST assay. The integrity of barrier proteins and the expression of cytokines and cathepsin S were evaluated by RT-qPCR, ELISA, and immunostaining with confocal microscopy. RESULTS HCECs survived well in 450mOsM but partially damaged in 500mOsM medium. Ectoine well protected HCEC survival and proliferation at 500mOsM. The integrity of epithelial barrier was significantly disrupted in HCECs exposed to 450mOsM, as shown by 2D and 3D confocal immunofluorescent images of tight junction proteins ZO-1 and occludin. Ectoine at 5-20 mM well protected these barrier proteins under hyperosmotic stress. The expression of TNF-α, IL-1β, IL-6 and IL-8 were dramatically stimulated by hyperosmolarity but significantly suppressed by Ectoine at 5-40 mM. Cathepsin S, which was stimulated by hyperosmolarity, directly disrupted epithelial barrier. Interestingly, anti-inflammatory cytokine IL-37 was suppressed by hyperosmolarity, but restored by ectoine at mRNA and protein levels. Furthermore, rhIL-37 suppressed cathepsin S and rescued cell survival and barrier in HCECs exposed to hyperosmolarity. CONCLUSION Our findings demonstrate that ectoine protects HCEC survival and barrier from hyperosmotic stress by promoting IL-37. This provides new insight into pathogenesis and therapeutic potential for dry eye disease.
Collapse
Affiliation(s)
- Jin-Miao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Na Lin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun Zhang
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fang Bian
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haixia Liu
- Allergan, An AbbVie Company, Irvine, CA, 92612, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|