1
|
Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, Carlevatti V, Zovi A, Capuozzo M, Langella R. Current therapeutic overview and future perspectives regarding the treatment of psoriasis. Int Immunopharmacol 2024; 143:113388. [PMID: 39405929 DOI: 10.1016/j.intimp.2024.113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease affecting millions of people worldwide, characterized by rapid proliferation of keratinocytes, immune cell infiltration, and systemic inflammation. Over time, treatment strategies have evolved significantly from traditional topical therapies and phototherapy to advanced systemic options such as biologics and, more recently, oral small molecule drugs. This review aims to provide an in-depth examination of current psoriasis therapies, with a focus on biologics, oral small molecules, and new and emerging treatments. Several classes of biologic therapies have received regulatory approval for psoriasis, including inhibitors of TNF-α, IL-12/23, IL-17, and IL-23. Biologics have transformed psoriasis care, offering improved disease management and quality of life for patients, with generally favorable safety profiles. However, challenges such as high cost, potential immunogenicity and complexity of administration have sparked interest in alternative treatment options. Oral small molecules, particularly Janus kinase (JAK) inhibitors, have gained attention for their efficacy and ease of use, being orally administered drugs. These drugs mark a shift in therapeutic paradigms by providing an oral option that precisely targets specific signaling pathways. In addition to existing therapies, this review also highlights emerging treatments that could shape the future of psoriasis care, including new small-molecule inhibitors. Early clinical trials suggest that these agents could improve treatment outcomes for psoriasis patients. Current research is increasingly focused on understanding disease recurrence, particularly the influence of tissue-resident memory T cells (TRMs). Avoiding the proliferation of these cells may be crucial in attenuating recurrence. In particular, interleukin-23 (IL-23), produced by CD301b+ cells, has been linked to stimulation of TRM cell proliferation in the skin. This finding highlights that IL-23 inhibitors and treatments targeting CD301b+ cells are promising strategies for maintaining remission and preventing relapse. In summary, the landscape of psoriasis treatments is advancing rapidly, with an increasing focus on personalized, patient-specific therapies. Research is expected to continue to refine and improve therapeutic approaches for this complex disease.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 72, Nola (NA), Italy.
| | - Chiara Verduci
- IRCCS Humanitas Research Hospital, Manzoni Street 56, 20089 Rozzano, Milan, Italy
| | - Emanuela Laconi
- Pharmaceutical Department, ASST Nord Milano, E. Bassini Hospital, Massimo Gorki Street 50, 20092 Cinisello Balsamo (MI), Italy.
| | - Andrea Mangione
- Pharmaceutical Department, ASST Valle Olona, Busto Arsizio Hospital, Arnaldo da Brescia 1 Street, 21052 Busto Arsizio (VA), Italy
| | - Chiara Dondi
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano (MI), Italy
| | - Marta Del Vecchio
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano (MI), Italy
| | - Veronica Carlevatti
- Hospital Pharmacy Department, ASST Fatebenefratelli-Sacco, V. Buzzi Hospital, Castelvetro Street 28, 20154 Milano (MI), Italy.
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell'amicizia Street 72, Nola (NA), Italy.
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini, 81, Milan 20159, Italy
| |
Collapse
|
2
|
Elkordy AA, Hill D, Attia M, Chaw CS. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1760. [PMID: 39513840 PMCID: PMC11547384 DOI: 10.3390/nano14211760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most noticeable pathophysiological effect of psoriasis is the abnormal proliferation of keratinocytes. Breast cancer is currently the most diagnosed cancer and the leading cause of cancer-related death among women globally. While treatments targeting the primary tumor have significantly improved, preventing metastasis with systemic treatments is less effective. Nanocarriers such as liposomes and lipid nanoparticles have emerged as promising drug delivery systems for drug targeting and specificity. Advances in technologies and drug combinations have emerged to develop more efficient lipid nanocarriers to include more than one drug in combinational therapy to enhance treatment outcomes and/or relief symptoms for better patients' quality of life. Although there are FDA-approved liposomes with anti-cancer drugs for breast cancer, there are still unmet clinical needs to reduce the side effects associated with those nanomedicines. Hence, combinational nano-therapy may eliminate some of the issues and challenges. Furthermore, there are no nanomedicines yet clinically available for psoriasis. Hence, this review will focus on liposomes encapsulated single and/or combinational therapy to augment treatment outcomes with an emphasis on the effectiveness of combinational therapy within liposomal-based nanoparticulate drug delivery systems to tackle psoriasis and breast cancer. This review will also include an overview of both diseases, challenges in delivering drug therapy and the roles of nanomedicines as well as psoriasis and breast cancer models used for testing therapeutic interventions to pave the way for effective in vivo testing prior to the clinical trials.
Collapse
Affiliation(s)
- Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - David Hill
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| | - Mohamed Attia
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| |
Collapse
|
3
|
Xia S, Li J, Yuan H, Yan W. PIN1‑silencing mitigates keratinocyte proliferation and the inflammatory response in psoriasis by activating mitochondrial autophagy. Exp Ther Med 2024; 28:402. [PMID: 39234585 PMCID: PMC11372252 DOI: 10.3892/etm.2024.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 09/06/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) has been suggested to be a critical regulator in skin-related diseases. However, the role and molecular mechanism of PIN1 in psoriasis remain unclear. HaCaT cells were stimulated with five cytokines (M5) to induce psoriatic inflammation-like conditions. Reverse transcription-quantitative PCR and western blotting were performed to examine PIN1 expression in M5-induced HaCaT cells. A Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were employed to examine cell proliferation. Inflammatory factors were evaluated using ELISA kits and western blot analysis. Mitochondrial autophagy was examined by immunofluorescence staining, western blotting and a JC-1 assay. Western blot analysis was adopted to assess the levels of psoriasis marker proteins. PIN1 expression was markedly elevated in M5-induced HaCaT cells. Silencing of PIN1 inhibited M5-induced hyperproliferation and the inflammatory response, while it promoted mitochondrial autophagy in HaCaT cells. The addition of the mitochondrial autophagy inhibitor mitochondrial division inhibitor-1 reversed the effects of PIN1 interference on proliferation, the inflammatory response and mitochondrial autophagy in M5-induced HaCaT cells. The present study revealed that PIN1 inhibition protected HaCaT cells against M5-induced hyperproliferation and inflammatory injury through the activation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Jin Li
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Hongshan Yuan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Wenliang Yan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
4
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
5
|
Masuda-Kuroki K, Alimohammadi S, Lowry S, Di Nardo A. Sphingosine 1-phosphate receptor 2 in keratinocytes plays a key role in reducing inflammation in psoriasis. Front Immunol 2024; 15:1469829. [PMID: 39391307 PMCID: PMC11464331 DOI: 10.3389/fimmu.2024.1469829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Psoriasis is an inflammatory skin condition where immune cells play a significant role. The importance of the cross-talk between keratinocytes and immune cells in the pathogenesis of psoriasis has recently been reaffirmed. Recent studies have found that several S1PR functional antagonists, other than S1PR2, are effective in improving psoriasis. This study aims to investigate the role of S1PR2 in psoriasis, that has not been investigated before. Methods Spatial transcriptomics, RT-qPCR, and flow cytometry were used to map the immune cell landscape and its association with metabolic pathways in an imiquimod (IMQ)-induced psoriasis-like inflammation in S1pr2fl/fl K14-Cre mice that could not sense sphingosine-1-phosphate (S1P) in the epidermis through the S1PR2 receptor. Results Our analysis suggests that S1PR2 in keratinocytes plays a major role in psoriasis-like inflammation compared to other S1PRs. It acts as a down-regulator, inhibiting the recruitment of Th17 cells into the skin. In IMQ-induced psoriasis skin, both S1pr2-/- and S1pr2fl/fl K14-Cre mice showed higher expressions of proinflammatory cytokines such as TNF-α, IL-17A, and IL-1β together with higher expressions of MyD88/NF-κB pathway compared to the wild-type mice. Remarkably, in IMQ-treated mice, the deletion of S1pr2 in keratinocytes only resulted in a larger population of Th17 cells in skin-draining lymph nodes. Other S1PR modulators did not improve the worsening of psoriasis-like inflammation caused by S1PR2 deficiency in keratinocytes. Conclusion This study reaches two main conclusions: signals from keratinocytes play a central role in creating an immune environment that promotes the development of psoriasis, and stimulating S1PR2, instead of suppressing it, represents a potential therapeutic approach for psoriasis.
Collapse
Affiliation(s)
| | | | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Chen XB, Zheng YX, Guo TT, Xu F, Cui YZ, Nie L, Wang HB, Ye LR, Liu Y, Yang XY, Fu NC, Yan BX, Zheng M, Man XY. Inhibition of Epidermal Isoleucyl-tRNA Synthetase Ameliorates Psoriasis-Like Skin Lesions through Jak2/Signal Transducer and Activator of Transcription 3/CXCL16 Signaling Pathway. J Invest Dermatol 2024:S0022-202X(24)02095-5. [PMID: 39293712 DOI: 10.1016/j.jid.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Xin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Zhe Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Nie
- BioRay Pharmaceutical, Taizhou, China
| | | | - Li-Ran Ye
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- BioRay Pharmaceutical, Taizhou, China
| | - Xing-Yu Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ni-Chang Fu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, Carlevatti V, Zovi A, Capuozzo M, Langella R. Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules. Antibodies (Basel) 2024; 13:76. [PMID: 39311381 PMCID: PMC11417777 DOI: 10.3390/antib13030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Psoriasis is a persistent, inflammatory condition affecting millions globally, marked by excessive keratinocyte proliferation, immune cell infiltration, and widespread inflammation. Over the years, therapeutic approaches have developed significantly, shifting from conventional topical treatments and phototherapy to more sophisticated systemic interventions such as biologics and, recently, oral small-molecule drugs. This review seeks to present a comprehensive investigation of the existing psoriasis treatment options, focusing on biologic agents, oral small molecules, and emerging treatments. Several categories of biologic treatments have received regulatory approval for psoriasis, including TNF-α, IL-17, IL-12/23, and IL-23 inhibitors. Biologics have revolutionized the treatment of psoriasis. These targeted therapies offer significant improvement in disease control and quality of life, with acceptable safety profiles. However, limitations such as cost, potential immunogenicity, and administration challenges have driven the exploration of alternative treatment modalities. Oral small molecules, particularly inhibitors of Janus kinase (JAK), have emerged as options due to their convenience and efficacy. These agents represent a paradigm shift in the management of the condition, offering oral administration and targeted action on specific signaling pathways. In addition to existing therapies, the review explores emerging treatments that hold promise for the future of psoriasis care. These include innovative small-molecule inhibitors. Early-stage clinical trials suggest these agents may enhance outcomes for psoriasis patients. In conclusion, the therapeutic landscape of psoriasis is rapidly evolving, emphasizing targeted, patient-centered treatments. Ongoing research and development are expected to lead to more personalized and effective management strategies for this complex condition.
Collapse
Affiliation(s)
- Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 72, 80035 Nola, Italy;
| | - Chiara Verduci
- IRCCS Humanitas Research Hospital, Manzoni Street 56, 20089 Rozzano, Italy;
| | - Emanuela Laconi
- Pharmaceutical Department, ASST Nord Milano, E. Bassini Hospital, Massimo Gorki Street 50, 20092 Cinisello Balsamo, Italy;
| | - Andrea Mangione
- Pharmaceutical Department, ASST Valle Olona, Busto Arsizio Hospital, Arnaldo da Brescia 1 Street, 21052 Busto Arsizio, Italy;
| | - Chiara Dondi
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano, Italy; (C.D.); (M.D.V.)
| | - Marta Del Vecchio
- Pharmaceutical Department, ASST Ovest Milanese, Legnano Hospital, Papa Giovanni Paolo II Street, 20025 Legnano, Italy; (C.D.); (M.D.V.)
| | - Veronica Carlevatti
- Hospital Pharmacy Department, ASST Fatebenefratelli-Sacco, V. Buzzi Hospital, Castelvetro Street 28, 20154 Milano, Italy;
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 72, 80035 Nola, Italy;
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini 81, 20159 Milan, Italy;
| |
Collapse
|
8
|
Takeshima R, Kamata M, Suzuki S, Ito M, Watanabe A, Uchida H, Chijiwa C, Okada Y, Azuma S, Nagata M, Egawa S, Hiura A, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Tada Y. Interleukin-23 inhibitors decrease Fibrosis-4 index in psoriasis patients with elevated Fibrosis-4 index but not inteleukin-17 inhibitors. J Dermatol 2024; 51:1216-1224. [PMID: 38804254 DOI: 10.1111/1346-8138.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Recent studies indicate that hepatic diseases are associated with psoriasis. Non-invasive tests, including the Fibrosis-4 (FIB-4) index, which can confidently rule out the presence of advanced fibrosis, are currently receiving attention. However, data on the FIB-4 index in psoriasis patients and the effects of biologics on the FIB-4 index are limited. We investigated the relationships between the FIB-4 index and demographic or clinical characteristics as well as the effects of biologics on the FIB-4 index in psoriasis patients. Psoriasis patients aged 36-64 years, whose treatment was initiated with interleukin (IL)-17 inhibitors or IL-23 inhibitors for psoriasis from May 2015 to December 2022, were consecutively included. Data were collected retrospectively from the patients' charts. A total of 171 psoriasis patients were included in this study. Thirty-four, 43, 21, 32, and 41 psoriasis patients were treated with secukinumab, ixekizumab, brodalumab, guselkumab, or risankizumab, respectively. In biologics-naïve patients, a significant but weak positive correlation was observed between the FIB-4 index and age (r = 0.3246, p = 0.0018). There was no significant correlation between the FIB-4 index and other demographic or clinical characteristics. Regarding the effects of biologics on the FIB-4 index, no significant change was observed in psoriasis patients treated with any biologics. However, in psoriasis patients with a baseline FIB-4 index of >1.3, patients treated with guselkumab and those treated with either IL-23 inhibitor showed significantly decreased FIB-4 index scores 6 months after initiating the biologics (p = 0.0323, p = 0.0212). In contrast, no change was observed in FIB-4 index scores in patients treated with IL-17 inhibitors. In conclusion, our study revealed that the FIB-4 index was correlated with age in psoriasis patients. Furthermore, IL-23 inhibitors (but not IL-17 inhibitors) decreased the FIB-4 index score at 6 months in psoriasis patients with elevated FIB-4 index scores at baseline. Further studies are needed to clarify whether IL-23 inhibitors improve liver fibrosis physiologically and functionally.
Collapse
Affiliation(s)
- Ryosuke Takeshima
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoya Suzuki
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Ito
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ayu Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideaki Uchida
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Chika Chijiwa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiki Okada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saori Azuma
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Mayumi Nagata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shota Egawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Azusa Hiura
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saki Fukaya
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Hayashi
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsuko Fukuyasu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takamitsu Tanaka
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeko Ishikawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Wu P, Liu Y, Zhai H, Wu X, Liu A. Rutin alleviates psoriasis-related inflammation in keratinocytes by regulating the JAK2/STAT3 signaling. Skin Res Technol 2024; 30:e70011. [PMID: 39167035 PMCID: PMC11337924 DOI: 10.1111/srt.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that can cause systemic inflammation in various organs. Rutin has been suggested to fight psoriasis, but the signaling pathways by which it works need to be explored. MATERIALS AND METHODS HaCaT cells co-stimulated with interleukin (IL)-17, IL-22, tumor necrosis factor-alpha (TNF-α), IL-1α, and oncostatin M (M5) were used as an in vitro cell model of psoriasis. The proliferation and viability of HaCaT cells were determined by 5-ethynyl-2'-deoxyuridine and cell counting assays. Relative mRNA levels of IL-6, TNF-α, chemokines (CXCL1 and CXCL2), and anti-microbial peptides (S100A7 and S100A8) were detected by reverse transcriptase-quantitative PCR. Release of IL-6 and TNF-α from HaCaT cells was measured by enzyme-linked immunosorbent assay. Keratin1, Keratin5, p-JAK2, and p-STAT3 protein levels were estimated with western blotting. Molecular docking predicted binding sites for Rutin and STAT3. RESULTS Rutin treatment undercut M5-urged viability increase and proliferation boost in HaCaT cells. Moreover, M5 stimulation mediated upregulation of IL-6, TNF-α, CXCL1, CXCL2, S100A7, and S100A8 was partially reversed after Rutin treatment. In addition, M5 stimulation induced downregulation of Keratin1 and Keratin5 proteins as well as upregulation of p-JAK2 and p-STAT3 proteins were attenuated in response to Rutin treatment, manifesting that Rutin treatment inhibited M5-promoted aberrant differentiation and impaired M5-mediated activation of the JAK2/STAT3 signaling in HaCaT cells. Molecular docking discovered that residues GLN326 and ASP334 in STAT3 might bind to Rutin. CONCLUSION Rutin treatment blocked the JAK2/STAT3 signaling, thus attenuating psoriasis-related inflammation and anomalous differentiation in keratinocytes.
Collapse
Affiliation(s)
- Panhong Wu
- Medical Beauty DepartmentHenan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Yonghui Liu
- Surgery of Chinese MedicineThe Second Clinical Medical College of Henan University of Traditional Chinese MedicineZhengzhouChina
| | - Hanxue Zhai
- Surgery of Chinese MedicineThe Second Clinical Medical College of Henan University of Traditional Chinese MedicineZhengzhouChina
| | - Xiaohan Wu
- Surgery of Chinese MedicineThe Second Clinical Medical College of Henan University of Traditional Chinese MedicineZhengzhouChina
| | - Aimin Liu
- Medical Beauty DepartmentHenan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| |
Collapse
|
10
|
Kapoor DU, Garg R, Maheshwari R, Gaur M, Sharma D, Prajapati BG. Advancing psoriasis drug delivery through topical liposomes. Z NATURFORSCH C 2024; 0:znc-2024-0118. [PMID: 39037729 DOI: 10.1515/znc-2024-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Rahul Garg
- Asian College of Pharmacy, Rajasthan University of Health Sciences, Udaipur, Rajasthan 313001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, 509301, Jadcherla, Hyderabad, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302026, India
| | - Deepak Sharma
- Institute of Pharmacy, Assam Don Bosco University, Tapesia, Assam 782402, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
11
|
Ma J, Ji C, Sun Y, Liu D, Pan K, Wei Y. Wogonin ameliorates the proliferation, inflammatory response, and pyroptosis in keratinocytes via NOD-like receptor family pyrin domain containing 3/Caspase-1/Gasdermin-D pathway. Immun Inflamm Dis 2024; 12:e1303. [PMID: 38967379 PMCID: PMC11225086 DOI: 10.1002/iid3.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Psoriasis refers to a highly prevalent and immunologically mediated dermatosis with considerable deterioration in life quality. Wogonin, a sort of flavonoid, has been mentioned to elicit protective activities in skin diseases. However, whether Wogonin is implicated in the treatment of psoriasis and its specific mechanisms are not fully understood. AIM The present work attempted to elaborate the role of Wogonin during the process of psoriasis and to concentrate on the associated action mechanism. METHODS Cell counting kit-8 (CCK-8) method was initially applied to assay the viability of human keratinocyte HaCaT cells treated by varying concentrations of Wogonin. To mimic psoriasis in vitro, HaCaT cells were exposed to M5 cytokines. CCK-8 and 5-Ethynyl-2'-deoxyuridine assays were adopted for the measurement of cell proliferation. Inflammatory levels were examined with enzyme-linked immunosorbent assay. Immunofluorescence staining tested nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and Caspase-1 expressions. Western blot examined the protein expressions of proliferation-, inflammation-, pyroptosis-associated factors, and NLRP3. RESULTS Wogonin treatment antagonized the proliferation, inflammatory response, and NLRP3/caspase-1/Gasdermin-D (GSDMD)-mediated pyroptosis in M5-challenged HaCaT cells. Besides, NLRP3 elevation partially abrogated the effects of Wogonin on M5-induced proliferation, inflammatory response, and NLRP3/caspase-1/GSDMD-mediated pyroptosis in HaCaT cells. CONCLUSION In a word, Wogonin might exert anti-proliferation, anti-inflammatory and anti-pyroptosis activities in M5-induced cell model of psoriasis and the blockade of NLRP3/Caspase-1/GSDMD pathway might be recognized as a potential mechanism underlying the protective mechanism of Wogonin in psoriasis, suggesting Wogonin as a prospective anti-psoriasis drug.
Collapse
Affiliation(s)
- Jun Ma
- First College of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Chen Ji
- Department of DermatologyZhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhouChina
| | - Yanhong Sun
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Danqing Liu
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Kai Pan
- Department of DermatologyThe Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhouChina
| | - Yuegang Wei
- First College of Clinical MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
12
|
Joseph T, Genkin M, Genkin A, Joseph J, Manuchian E, Ray K. The Efficacy of Imiquimod-Induced Psoriasis Model on Murine Cells. Cureus 2024; 16:e62914. [PMID: 39040747 PMCID: PMC11262541 DOI: 10.7759/cureus.62914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Keratinocytes are an essential component of the epidermis that undergoes constant proliferation and differentiation. However, the dysregulation of keratinocyte differentiation has been implicated in various skin disorders such as psoriasis. Imiquimod, otherwise known as IMQ, is a topical immunomodulator often used to induce psoriasis-like lesions in murine models for research purposes. This study focuses on the efficacy of using IMQ to induce a psoriasis-like model on murine skin cells by analyzing single-cell RNA sequencing and trajectory analysis. The results indicate a few differences between IMQ-induced and control murine cells, primarily the increased keratinocyte and immune cell populations, which reflects the cell identity found on psoriatic skin. However, trajectory analysis reveals that IMQ-induced cells have quite a linear differentiation pattern compared to the branched pattern found in control cells. As a result, further research must be conducted to explore differing factors between psoriatic cells and IMQ-induced cells to determine its usefulness in mimicking psoriasis-like conditions for research.
Collapse
Affiliation(s)
- Tony Joseph
- Department of Biology, City University of New York-Brooklyn College, Brooklyn, USA
| | - Mark Genkin
- Department of Biology, City University of New York-Brooklyn College, Brooklyn, USA
- Department of Biology, City University of New York-Macaulay Honors College, Brooklyn, USA
| | | | - John Joseph
- Department of Biology, Montgomery Blair High School, Silver Spring, USA
| | - Eddy Manuchian
- Department of Rheumatology, Veteran Affairs Medical Center, Brooklyn, USA
| | - Kathryn Ray
- Department of Microbiology, City University of New York-Brooklyn College, Brooklyn, USA
| |
Collapse
|
13
|
Yang X, Cheng J, Yin X, Ao T, He X, Yang Y, Lin Y, Chen Z. Metabolic Profiling for Unveiling Mechanisms of Kushenol F against Imiquimod-Induced Psoriasis with UHPLC/MS Analysis. Molecules 2024; 29:2410. [PMID: 38893287 PMCID: PMC11173924 DOI: 10.3390/molecules29112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is a common chronic immune-mediated inflammatory skin disorder. Sophora flavescens Alt. (S. flavescens) has been widely acknowledged in the prevention and treatment of psoriasis. Kushenol F (KSCF) is a natural isopentenyl flavonoid extracted from the root of S. flavescens. We aimed to investigate the effect and mechanism of KSCF on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. A mouse model of psoriasis was induced with 5% IMQ for 5 days, and the mice were given KSCF dermally for 5 days. Changes in skin morphology, the psoriasis area, the severity index (PASI), and inflammatory factors of psoriasis-like skin lesions were evaluated. Metabolites in the psoriasis-like skin lesions were analyzed with ultra-high-performance liquid chromatography/mass spectrometry followed by a multivariate statistical analysis to identify the differential metabolites and metabolic pathway. The results of the present study confirmed that KSCF significantly reduced PASI scores, epidermal thickening, and epidermal cell proliferation and differentiation. KSCF also reduced the levels of interleukin (IL)-1β, IL-6, IL-8, IL-17A, IL-22, IL-23, and tumor necrosis factor (TNF)-α in the injured skin tissues while increasing IL-10 content. KSCF significantly regulated metabolites in the skin samples, and a total of 161 significant metabolites were identified. These differential metabolites involved sphingolipid and linoleic acid metabolism and steroid hormone biosynthesis. Collectively, KSCF inhibited the inflammatory response to prevent IMQ-induced psoriasis-like skin lesions in mice by call-backing the levels of 161 endogenous metabolites and affecting their related metabolic pathways. KSCF has the potential to be developed as a topical drug for treating psoriasis symptoms.
Collapse
Affiliation(s)
- Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Jiaoli Cheng
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China;
| | - Xunqing Yin
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Xudong He
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Yaqin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Yuping Lin
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.Y.); (X.Y.); (T.A.); (X.H.)
| | - Zhen Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China;
| |
Collapse
|
14
|
Dascălu RC, Bărbulescu AL, Stoica LE, Dinescu ȘC, Biță CE, Popoviciu HV, Ionescu RA, Vreju FA. Review: A Contemporary, Multifaced Insight into Psoriasis Pathogenesis. J Pers Med 2024; 14:535. [PMID: 38793117 PMCID: PMC11122105 DOI: 10.3390/jpm14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a chronic recurrent inflammatory autoimmune pathology with a significant genetic component and several interferences of immunological cells and their cytokines. The complex orchestration of psoriasis pathogenesis is related to the synergic effect of immune cells, polygenic alterations, autoantigens, and several other external factors. The major act of the IL-23/IL-17 axis, strongly influencing the inflammatory pattern established during the disease activity, is visible as a continuous perpetuation of the pro-inflammatory response and keratinocyte activation and proliferation, leading to the development of psoriatic lesions. Genome-wide association studies (GWASs) offer a better view of psoriasis pathogenic pathways, with approximately one-third of psoriasis's genetic impact on psoriasis development associated with the MHC region, with genetic loci located on chromosome 6. The most eloquent genetic factor of psoriasis, PSORS1, was identified in the MHC I site. Among the several factors involved in its complex etiology, dysbiosis, due to genetic or external stimulus, induces a burst of pro-inflammatory consequences; both the cutaneous and gut microbiome get involved in the psoriasis pathogenic process. Cutting-edge research studies and comprehensive insights into psoriasis pathogenesis, fostering novel genetic, epigenetic, and immunological factors, have generated a spectacular improvement over the past decades, securing the path toward a specific and targeted immunotherapeutic approach and delayed progression to inflammatory arthritis. This review aimed to offer insight into various domains that underline the pathogenesis of psoriasis and how they influence disease development and evolution. The pathogenesis mechanism of psoriasis is multifaceted and involves an interplay of cellular and humoral immunity, which affects susceptible microbiota and the genetic background. An in-depth understanding of the role of pathogenic factors forms the basis for developing novel and individualized therapeutic targets that can improve disease management.
Collapse
Affiliation(s)
- Rucsandra Cristina Dascălu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Andreea Lili Bărbulescu
- Department of Pharmacology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Cristina Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| | - Horațiu Valeriu Popoviciu
- Department of Rheumatology, BFK and Medical Rehabilitation, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Mures, Romania;
| | - Răzvan Adrian Ionescu
- Third Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Florentin Ananu Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.D.); (C.E.B.); (F.A.V.)
| |
Collapse
|
15
|
Gupta RK, Figueroa DS, Fung K, Miki H, Miller J, Ay F, Croft M. LIGHT signaling through LTβR and HVEM in keratinocytes promotes psoriasis and atopic dermatitis-like skin inflammation. J Autoimmun 2024; 144:103177. [PMID: 38368767 DOI: 10.1016/j.jaut.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin β receptor (LTβR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTβR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTβR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.
Collapse
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Mihu C, Popescu CA, Cenariu D, Vesa Ş, Baican A, Melincovici CS, Drulă R, Tigu AB, Buzoianu AD. Is Mir-205 a possible biomarker for evaluating treatment response in psoriasis? J Med Life 2024; 17:353-359. [PMID: 39044928 PMCID: PMC11262607 DOI: 10.25122/jml-2024-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024] Open
Abstract
Psoriasis is a chronic skin disease that affects a significant number of patients and can severely impair quality of life. Although the diagnosis is normally clinical, paraclinical determination can occasionally be useful either in differential diagnosis or in evaluating the inflammatory response to treatment. MicroRNAs (miRNAs) are small non-coding parts of the RNA family that regulate gene expression and may have an important role as biomarkers in evaluating treatment response. The dysregulation of miRNAs has been well studied in other diseases, especially in oncology, but their role in chronic skin conditions such as psoriasis is still not fully understood. This study aims to evaluate the levels of three miRNAs (miR-155, miR-210, and miR-205) in patients with psoriasis, treated either systemically or topically, compared to a control group, and to assess the possible relationship between miRNA levels and systemic therapy. Our findings show a constant dysregulation of miR-205 in patients with psoriasis, with significantly higher levels compared to the control group, which can be explained as conferring a protective effect to treated patients. Further studies are needed in order to fully understand the role of miRNAs in the physiopathology of psoriasis and even, potentially, to provide more targeted genetic therapies in the future.
Collapse
Affiliation(s)
- Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Codruța Alina Popescu
- Department of Human Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Medfuture Research Centre for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ştefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Rareş Drulă
- Medfuture Research Centre for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Centre for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Liu W. The Involvement of Cysteine-X-Cysteine Motif Chemokine Receptors in Skin Homeostasis and the Pathogenesis of Allergic Contact Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1005. [PMID: 38256077 PMCID: PMC10815665 DOI: 10.3390/ijms25021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the C-X-C motif chemokine receptor (CXCR) superfamily play central roles in initiating the innate immune response in mammalian cells by orchestrating selective cell migration and immune cell activation. With its multilayered structure, the skin, which is the largest organ in the body, performs a crucial defense function, protecting the human body from harmful environmental threats and pathogens. CXCRs contribute to primary immunological defense; these receptors are differentially expressed by different types of skin cells and act as key players in initiating downstream innate immune responses. While the initiation of inflammatory responses by CXCRs is essential for pathogen elimination and tissue healing, overactivation of these receptors can enhance T-cell-mediated autoimmune responses, resulting in excessive inflammation and the development of several skin disorders, including psoriasis, atopic dermatitis, allergic contact dermatitis, vitiligo, autoimmune diseases, and skin cancers. In summary, CXCRs serve as critical links that connect innate immunity and adaptive immunity. In this article, we present the current knowledge about the functions of CXCRs in the homeostasis function of the skin and their contributions to the pathogenesis of allergic contact dermatitis and psoriasis. Furthermore, we will examine the research progress and efficacy of therapeutic approaches that target CXCRs.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|