1
|
James DM, Kozol RA, Kajiwara Y, Wahl AL, Storrs EC, Buxbaum JD, Klein M, Moshiree B, Dallman JE. Intestinal dysmotility in a zebrafish ( Danio rerio) shank3a;shank3b mutant model of autism. Mol Autism 2019; 10:3. [PMID: 30733854 PMCID: PMC6357389 DOI: 10.1186/s13229-018-0250-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background and aims Autism spectrum disorder (ASD) is currently estimated to affect more than 1% of the world population. For people with ASD, gastrointestinal (GI) distress is a commonly reported but a poorly understood co-occurring symptom. Here, we investigate the physiological basis for GI distress in ASD by studying gut function in a zebrafish model of Phelan-McDermid syndrome (PMS), a condition caused by mutations in the SHANK3 gene. Methods To generate a zebrafish model of PMS, we used CRISPR/Cas9 to introduce clinically related C-terminal frameshift mutations in shank3a and shank3b zebrafish paralogues (shank3abΔC). Because PMS is caused by SHANK3 haploinsufficiency, we assessed the digestive tract (DT) structure and function in zebrafish shank3abΔC+/− heterozygotes. Human SHANK3 mRNA was then used to rescue DT phenotypes in larval zebrafish. Results Significantly slower rates of DT peristaltic contractions (p < 0.001) with correspondingly prolonged passage time (p < 0.004) occurred in shank3abΔC+/− mutants. Rescue injections of mRNA encoding the longest human SHANK3 isoform into shank3abΔC+/− mutants produced larvae with intestinal bulb emptying similar to wild type (WT), but still deficits in posterior intestinal motility. Serotonin-positive enteroendocrine cells (EECs) were significantly reduced in both shank3abΔC+/− and shank3abΔC−/− mutants (p < 0.05) while enteric neuron counts and overall structure of the DT epithelium, including goblet cell number, were unaffected in shank3abΔC+/− larvae. Conclusions Our data and rescue experiments support mutations in SHANK3 as causal for GI transit and motility abnormalities. Reductions in serotonin-positive EECs and serotonin-filled ENS boutons suggest an endocrine/neural component to this dysmotility. This is the first study to date demonstrating DT dysmotility in a zebrafish single gene mutant model of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-018-0250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M James
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A Kozol
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Yuji Kajiwara
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA.,5Denali Therapeutics, South San Francisco, CA USA
| | - Adam L Wahl
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Emily C Storrs
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| | - Joseph D Buxbaum
- 2Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mason Klein
- 3Department of Physics, University of Miami, Coral Gables, FL USA
| | - Baharak Moshiree
- Division of Gastroenterology, Atrium Health, University of North Carolina, Charlotte, NC USA
| | - Julia E Dallman
- 1Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
2
|
Chaudhury A, Dendi VSR, Chaudhury M, Jain A, Kasarla MR, Panuganti K, Jain G, Ramanujam A, Rena B, Koyagura SR, Fogla S, Kumar S, Shekhawat NS, Maddur S. HSV1/2 Genital Infection in Mice Cause Reversible Delayed Gastrointestinal Transit: A Model for Enteric Myopathy. Front Med (Lausanne) 2018; 5:176. [PMID: 30065927 PMCID: PMC6056620 DOI: 10.3389/fmed.2018.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
In an interesting investigation by Khoury-Hanold et al. (1), genital infection of mice with herpes simplex virus 1 (HSV1) were reported to cause multiple pelvic organ involvement and obstruction. A small subset of mice succumbed after the first week of HSV1 infection. The authors inferred that the mice died due to toxic megacolon. In a severe form of mechanical and/or functional obstruction involving gross dilation of the colon and profound toxemia, the presentation is called "toxic megacolon." The representative observations by Khoury-Hanold likely do not resemble toxic megacolon. The colon was only slightly dilated and benign appearing. Importantly, HSV1 infection affected the postjunctional mechanisms of smooth muscle relaxation like the sildenafil-response proteins, which may have been responsible for defective nitrergic neurotransmission and the delayed transit. Orally administered polyethylene glycol reversed the gastrointestinal "obstruction," suggesting a mild functional type of slowed luminal transit, resembling constipation, rather than toxic megacolon, which cannot be reversed by an osmotic laxative without perforating the gut. The authors suggest that the mice did not develop HSV1 encephalitis, the commonly known cause of mortality. The premature death of some of the mice could be related to the bladder outlet obstruction, whose backflow effects may alter renal function, electrolyte abnormalities and death. Muscle strip recordings of mechanical relaxation after electrical field stimulation of gastrointestinal, urinary bladder or cavernosal tissues shall help obtain objective quantitative evidence of whether HSV infection indeed cause pelvic multi-organ dysfunction and impairment of autonomic neurotransmission and postjunctional electromechanical relaxation mechanisms of these organs.
Collapse
Affiliation(s)
| | | | | | - Astha Jain
- Wanderful Media/University of Southern California, Los Angeles, CA, United States
| | | | | | - Gaurav Jain
- Berkshire Medical Center, Pittsfield, MA, United States
| | | | - Bhavin Rena
- Xenco Laboratories, Houston, TX, United States
| | | | - Sumit Fogla
- Beaumont Hospital, Grosse Pointe, MI, United States
| | - Sunil Kumar
- Neshoba County General Hospital, Philadelphia, MS, United States
| | | | - Srinivas Maddur
- All India Institute of Medical Sciences, New Delhi, India
- ESIC Medical College, Sanathnagar, India
| |
Collapse
|
3
|
Chaudhury A, Dendi VSR, Mirza W. Colligative Property of ATP: Implications for Enteric Purinergic Neuromuscular Neurotransmission. Front Physiol 2016; 7:500. [PMID: 27840610 PMCID: PMC5083878 DOI: 10.3389/fphys.2016.00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/13/2016] [Indexed: 01/04/2023] Open
Affiliation(s)
| | | | - Wasique Mirza
- The Wright Center for Graduate Medical Education, The Commonwealth Medical College Scranton, PA, USA
| |
Collapse
|
4
|
Chaudhury A. Response: "Commentary: A Hypothesis for Examining Skeletal Muscle Biopsy-Derived Sarcolemmal nNOSµ as Surrogate for Enteric nNOSα Function". nNOS(skeletal muscle) may be Evidentiary for Enteric NO-Transmission Despite nNOSµ/α Differences. Front Med (Lausanne) 2016; 3:4. [PMID: 26942180 PMCID: PMC4761842 DOI: 10.3389/fmed.2016.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Arun Chaudhury
- Arkansas Department of Health and GIM Foundation , Little Rock, AR , USA
| |
Collapse
|
5
|
Wang M, Qi DS, Zhou C, Han D, Li PP, Zhang F, Zhou XY, Han M, Di JH, Ye JS, Yu HM, Song YJ, Zhang GY. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway. Brain Res 2016; 1634:140-149. [PMID: 26794251 DOI: 10.1016/j.brainres.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.
Collapse
Affiliation(s)
- Mei Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Da-Shi Qi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Cui Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Dong Han
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Pei-Pei Li
- Department of Endocrine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, PR China
| | - Fang Zhang
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Yan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Meng Han
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, PR China
| | - Jie-Hui Di
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Jun-Song Ye
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Hong-Min Yu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Yuan-Jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| | - Guang-Yi Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
6
|
Chaudhury A. A Hypothesis for Examining Skeletal Muscle Biopsy-Derived Sarcolemmal nNOSμ as Surrogate for Enteric nNOSα Function. Front Med (Lausanne) 2015; 2:48. [PMID: 26284245 PMCID: PMC4517061 DOI: 10.3389/fmed.2015.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of gastrointestinal motility disorders is controversial and largely unresolved. This provokes empiric approaches to patient management of these so-called functional gastrointestinal disorders. Preliminary evidence demonstrates that defects in neuronal nitric oxide synthase (nNOS) expression and function, the enzyme that synthesizes nitric oxide (NO), the key inhibitory neurotransmitter mediating mechano-electrical smooth muscle relaxation, is the major pathophysiological basis for sluggishness of oro-aboral transit of luminal contents. This opinion is an ansatz of the potential of skeletal muscle biopsy and examining sarcolemmal nNOSμ to provide complementary insights regarding nNOSα expression, localization, and function within enteric nerve terminals, the site of stimulated de novo NO synthesis. The main basis of this thesis is twofold: (a) the molecular similarity of the structures of nNOS α and μ, similar mechanisms of localizations to “active zones” of nitrergic synthesis, and same mechanisms of electron transfers during NO synthesis and (b) pragmatic difficulty to routinely obtain full-thickness biopsies of gastrointestinal tract, even in patients presenting with the most recalcitrant manifestations of stasis and delayed transit of luminal contents. This opinion attempts to provoke dialog whether this approach is feasible as a surrogate to predict catalytic potential of nNOSα and defects in nitrergic neurotransmission. This discussion makes an assumption that similar molecular mechanisms of nNOS defects shall be operant in both the enteric nerve terminals and the skeletal muscles. These overlaps of skeletal and gastrointestinal dysfunction are largely unknown, thus meriting that the thesis be validated in future by proof-of-principle experiments.
Collapse
|
7
|
Chaudhury A. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters! Front Med (Lausanne) 2015; 2:42. [PMID: 26151053 PMCID: PMC4471425 DOI: 10.3389/fmed.2015.00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/02/2015] [Indexed: 01/04/2023] Open
Abstract
Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of “sphincter proteome.” Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled “idiopathic” and facilitating practice of precision medicine.
Collapse
|
8
|
Chaudhury A. Similarity in Transcytosis of nNOSα in Enteric Nerve Terminals and Beta Cells of Pancreatic Islet. Front Med (Lausanne) 2014; 1:20. [PMID: 25705631 PMCID: PMC4335384 DOI: 10.3389/fmed.2014.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Affiliation(s)
- Arun Chaudhury
- Division of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston HealthCare System , Boston, MA , USA
| |
Collapse
|
9
|
Chaudhury A, De Miranda-Neto MH, Pereira RVF, Zanoni JN. Myosin Va but Not nNOSα is Significantly Reduced in Jejunal Musculomotor Nerve Terminals in Diabetes Mellitus. Front Med (Lausanne) 2014; 1:17. [PMID: 25705628 PMCID: PMC4335397 DOI: 10.3389/fmed.2014.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) mediated slow inhibitory junction potential and mechanical relaxation after electrical field stimulation (EFS) is impaired in diabetes mellitus. Externally added NO donor restore nitrergic function, indicating that this reduction result from diminution of NO synthesis within the pre-junctional nerve terminals. The present study aimed to investigate two specific aims that may potentially provide pathophysiological insights into diabetic nitrergic neuropathy. Specifically, alteration in nNOSα contents within jejunal nerve terminals and a local subcortical transporter myosin Va was tested 16 weeks after induction of diabetes by low dose streptozotocin (STZ) in male Wistar rats. The results show that diabetic rats, in contrast to vehicle treated animals, have: (a) nearly absent myosin Va expression in nerve terminals of axons innervating smooth muscles and (b) significant decrease of myosin Va in neuronal soma of myenteric plexus. In contrast, nNOSα staining in diabetic jejunum neuromuscular strips showed near intact expression in neuronal cell bodies. The space occupancy of nitrergic nerve fibers was comparable between groups. Normal concentration of nNOSα was visualized within a majority of nitrergic terminals in diabetes, suggesting intact axonal transport of nNOSα to distant nerve terminals. These results reveal the dissociation between presences of nNOSα in the nerve terminals but deficiency of its transporter myosin Va in the jejunum of diabetic rats. This significant observation of reduced motor protein myosin Va within jejunal nerve terminals may potentially explain impairment of pre-junctional NO synthesis during EFS of diabetic gut neuromuscular strips despite presence of the nitrergic synthetic enzyme nNOSα.
Collapse
Affiliation(s)
- Arun Chaudhury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston HealthCare System , West Roxbury, MA , USA
| | | | | | | |
Collapse
|