1
|
Iori M, Grassi E, Piergallini L, Meglioli G, Botti A, Sceni G, Cucurachi N, Verzellesi L, Finocchiaro D, Versari A, Fraboni B, Fioroni F. Safety injections of nuclear medicine radiotracers: towards a new modality for a real-time detection of extravasation events and 18F-FDG SUV data correction. EJNMMI Phys 2023; 10:31. [PMID: 37221434 DOI: 10.1186/s40658-023-00556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND 18F-FDG PET/CT imaging allows to study oncological patients and their relative diagnosis through the standardised uptake value (SUV) evaluation. During radiopharmaceutical injection, an extravasation event may occur, making the SUV value less accurate and possibly leading to severe tissue damage. The study aimed to propose a new technique to monitor and manage these events, to provide an early evaluation and correction to the estimated SUV value through a SUV correction coefficient. METHODS A cohort of 70 patients undergoing 18F- FDG PET/CT examinations was enrolled. Two portable detectors were secured on the patients' arms. The dose-rate (DR) time curves on the injected DRin and contralateral DRcon arm were acquired during the first 10 min of injection. Such data were processed to calculate the parameters ΔpinNOR = (DRinmax- DRinmean)/DRinmax and ΔRt = (DRin(t) - DRcon(t)), where DRinmax is the maximum DR value, DRinmean is the average DR value in the injected arm. OLINDA software allowed dosimetric estimation of the dose in the extravasation region. The estimated residual activity in the extravasation site allowed the evaluation of the SUV's correction value and to define an SUV correction coefficient. RESULTS Four cases of extravasations were identified for which ΔRt [(390 ± 26) µSv/h], while ΔRt [(150 ± 22) µSv/h] for abnormal and ΔRt [(24 ± 11) µSv/h] for normal cases. The ΔpinNOR showed an average value of (0.44 ± 0.05) for extravasation cases and an average value of (0.91 ± 0.06) and (0.77 ± 0.23) in normal and abnormal classes, respectively. The percentage of SUV reduction (SUV%CR) ranges between 0.3% and 6%. The calculated self-tissue dose values range from 0.027 to 0.573 Gy, according to the segmentation modality. A similar correlation between the inverse of ΔpinNOR and the normalised ΔRt with the SUV correction coefficient was found. CONCLUSIONS The proposed metrics allowed to characterised the extravasation events in the first few minutes after the injection, providing an early SUV correction when necessary. We also assume that the characterisation of the DR-time curve of the injection arm is sufficient for the detection of extravasation events. Further validation of these hypotheses and key metrics is recommended in larger cohorts.
Collapse
Affiliation(s)
- Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Elisa Grassi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Lorenzo Piergallini
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Greta Meglioli
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Giada Sceni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
- Department of Physics, University of Bologna, Bologna, Italy
| | - Noemi Cucurachi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy.
- Department of Physics, University of Padova, Padua, Italy.
| | - Laura Verzellesi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
- Department of Physics, University of Bologna, Bologna, Italy
| | - Domenico Finocchiaro
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
- Department of Physics, University of Bologna, Bologna, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Federica Fioroni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
2
|
Strigari L, Marconi R, Solfaroli-Camillocci E. Evolution of Portable Sensors for In-Vivo Dose and Time-Activity Curve Monitoring as Tools for Personalized Dosimetry in Molecular Radiotherapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:2599. [PMID: 36904802 PMCID: PMC10007630 DOI: 10.3390/s23052599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Treatment personalization in Molecular Radiotherapy (MRT) relies on pre- and post-treatment SPECT/ PET-based images and measurements to obtain a patient-specific absorbed dose-rate distribution map and its evolution over time. Unfortunately, the number of time points that are available per patient to investigate individual pharmacokinetics is often reduced by limited patient compliance or SPECT or PET/CT scanner availability for dosimetry in busy departments. The adoption of portable sensors for in-vivo dose monitoring during the entire treatment could improve the assessment of individual biokinetics in MRT and, thus, the treatment personalization. The evolution of portable devices, non-SPECT/PET-based options, already used for monitoring radionuclide activity transit and accumulation during therapy with radionuclides (i.e., MRT or brachytherapy), is presented to identify valuable ones, which combined with conventional nuclear medicine imaging systems could be effective in MRT. External probes, integration dosimeters and active detecting systems were included in the study. The devices and their technology, the range of applications, the features and limitations are discussed. Our overview of the available technologies encourages research and development of portable devices and dedicated algorithms for MRT patient-specific biokinetics study. This would represent a crucial advancement towards personalized treatment in MRT.
Collapse
Affiliation(s)
- Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy
| | - Raffaella Marconi
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | | |
Collapse
|
3
|
Perrin S, Kiser JW, Knowland J, Bowen SL. Development of a classifier for [18F]fluorodeoxyglucose extravasation severity using semi-quantitative readings from topically applied detectors. EJNMMI Phys 2022; 9:61. [PMID: 36104581 PMCID: PMC9474785 DOI: 10.1186/s40658-022-00488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Radiotracer extravasations, caused largely by faulty tracer injections, can occur in up to 23% of 18F-fluorodeoxyglucose (FDG) PET/CT scans and negatively impact radiological review and tracer quantification. Conventional radiological assessment of extravasation severity on PET has limited performance (e.g., extravasations frequently resolve before scanning) and practical drawbacks. In this study, we develop a new topical detector-based FDG extravasation severity classifier, calibrated from semi-quantitative PET measurements, and assess its performance on human subjects. Methods A retrospective study examined patients whose FDG injections had been monitored as part of their standard workup for PET/CT imaging. Topical uncollimated gamma ray detectors were applied proximal to the injection site and on the same location on the opposing arm, and readings were acquired continuously during radiotracer uptake. Patients were imaged with their arms in the PET field of view and total extravasation activity quantified from static PET images through a volume of interest approach. The image-derived activities were considered ground truth and used to calibrate and assess quantification of topical detector readings extrapolated to the start of PET imaging. The classifier utilizes the calibrated detector readings to produce four extravasation severity classes: none, minor, moderate, and severe. In a blinded study, a radiologist qualitatively labeled PET images for extravasation severity using the same classifications. The radiologist’s interpretations and topical detector classifications were compared to the ground truth PET results. Results Linear regression of log-transformed image-derived versus topical detector tracer extravasation activity estimates showed a strong correlation (R2 = 0.75). A total of 24 subject scans were cross-validated with the quantitatively based classifier through a leave-one-out methodology. For binary classification (none vs. extravasated), the topical detector classifier had the highest overall diagnostic performance for identifying extravasations. Specificity, sensitivity, accuracy, and positive predictive value were 100.0%, 80.0%, 95.8%, and 100.0%, respectively, for the topical detector classifier and 31.6%, 100.0%, 45.8%, and 27.8%, respectively, for the radiological analysis. The topical detector classifier, with an optimal detection threshold, produced a significantly higher Matthews correlation coefficient (MCC) than the radiological analysis (0.87 vs. 0.30). Conclusions The topical detector binary classifier, calibrated using quantitative static PET measurements, significantly improves extravasation detection compared to qualitative image analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00488-6.
Collapse
|
4
|
Crowley JR, Barvi I, Greulich D, Kiser JW. Detection of Excess Presence of 99m Tc-MDP Near Injection Site-A Case Report. Front Med (Lausanne) 2021; 8:728542. [PMID: 34604265 PMCID: PMC8484323 DOI: 10.3389/fmed.2021.728542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear medicine extravasations and prolonged venous stasis may cause poor quality and quantification errors that can affect image interpretation and patient management. Radiopharmaceutical remaining near the administration site means that some portion of the radioactivity is not circulating as required for the prescribed uptake period. This case describes how detection of excess presence of 99mTc-MDP near the injection site enabled the technologist to apply mitigation tactics early in the uptake process. It also suggests that detecting an extravasation or stasis early in the injection process can be important for image interpretation and minimizing radiation dose to tissue.
Collapse
Affiliation(s)
- James R Crowley
- Department of Molecular Imaging, Carilion Clinic, Roanoke, VA, United States
| | - Iryna Barvi
- Lucerno Dynamics LLC, Cary, NC, United States
| | | | - Jackson W Kiser
- Department of Molecular Imaging, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
5
|
Sanchez S, Currie GM. Detection of 18F-FDG Dose Leakage Using a Topical Device. J Nucl Med Technol 2020; 48:283-284. [DOI: 10.2967/jnmt.119.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
|
6
|
Currie GM, Sanchez S. Topical sensor metrics for 18F-FDG positron emission tomography dose extravasation. Radiography (Lond) 2020; 27:178-186. [PMID: 32768325 DOI: 10.1016/j.radi.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Extravasation or partial extravasation of the positron emission tomography (PET) tracer negatively effects image quality in PET and the accuracy of the standard uptake value (SUV). A commercially available topical sensor has been validated using a number of metrics to characterise injection quality. This evaluation explores contributing factors for extravasation and refines metrics to predict extravasation based on the time-activity-curves (TAC) of the topical sensor device. METHODS A multi-site, multi-national pooling of 18F FDG PET/CT data was undertaken with 863 patients from 6 sites in the USA and 2 sites in Australia. A number of dose migration metrics determined with topical application of Lara sensors were retrospectively analysed using conventional statistical analysis. Deeper insights into the complex relationship between variables was further explored using an artificial neural network. RESULTS Extravasation was independently predicted by the time taken for the injection sensor counts to reach double the counts of the reference sensor (tc50), the normalised difference between injection and reference sensors counts at 4 min post injection (ndAvgN), or the ratio of injection sensor counts to reference sensor counts at the end of data collection (CEnd ratio). The algorithm developed using the artificial neural network produced 100% sensitivity and 100% specificity against grounded truth for detecting extravasation by weighting and scaling these 3 key metrics; CEnd ratio, ndAvgN and tc50. CONCLUSION Partial extravasation of a PET dose is readily detected and differentiated using TAC metrics and these metrics could provide deeper insight into the impact of partial extravasation on image quality or quantitation. Further validation of key metrics developed in this study are recommended in a larger and more diverse cohort. IMPLICATIONS FOR PRACTICE Partial extravasation undermines image quality and accuracy of quantitation, impacting efficacy of outcomes for patients. Characterisation of extravasation informs decision making to optimise protocol and procedure, enhancing patient outcomes. Awareness provides the opportunity for education and training to minimise impact. The information can be used to drive policy and regulations to support improved techniques in practice.
Collapse
Affiliation(s)
- G M Currie
- Faculty of Science, Charles Sturt University, Wagga Wagga, Australia.
| | - S Sanchez
- Faculty of Science, Charles Sturt University, Port Macquarie, Australia
| |
Collapse
|
7
|
Sanchez S, Currie GM. Topical Sensor for the Assessment of PET Dose Administration: Metric Performance with an Autoinjector. J Nucl Med Technol 2020; 48:363-371. [PMID: 32518121 DOI: 10.2967/jnmt.120.245043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Extravasation or partial extravasation of the radiopharmaceutical dose in PET can undermine SUV and image quality. A topical sensor has been validated using several metrics to characterize injection quality after manual injection. The performance of these metrics for autoinjector administration has been assessed. Methods: A single PET/CT scanner at a single site was used to characterize injections using an autoinjector with standardized apparatus, flush volume, and infusion rate (1-min infusion followed by 2 syringe flushes) for 18F-FDG, 68Ga-prostate-specific membrane antigen, and 68Ga-DOTATATE. In total, 296 patients with topical application of sensors were retrospectively analyzed using conventional statistical analysis and an artificial neural network. Results: Partial extravasation was noted in 1.3% of studies, with 9.1% (inclusive of partial extravasation) identified to have an injection anomaly (e.g., venous retention). Extravasation was independently predicted by the time that elapsed as the counts recorded by the injection sensor fell from the maximum value to within 200% of the reference sensor counts greater than 1,200 s; as the difference in counts for injection and reference sensors, normalized by dose, from 4 min after injection greater than 25; and as the ratio of the average counts per second recorded by the injection sensor at the end of a monitoring period to those of the reference sensor greater than 2. Conclusion: Extravasation and partial extravasation of PET doses are readily detected and differentiated using time-activity curve metrics. The metrics can provide the insight that could inform image quality or SUV accuracy issues. Further validation of key metrics is recommended in a larger and more diverse cohort.
Collapse
Affiliation(s)
- Stephanie Sanchez
- Faculty of Science, Charles Sturt University, Port Macquarie, Australia; and
| | - Geoffrey M Currie
- Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
8
|
Sanchez S, Currie GM. Topical Sensor for the Assessment of Injection Quality for 18F-FDG, 68Ga-PSMA and 68Ga-DOTATATE Positron Emission Tomography. J Med Imaging Radiat Sci 2020; 51:247-255. [PMID: 32089515 DOI: 10.1016/j.jmir.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Calculation of the standard uptake value (SUV) and image quality in positron emission tomography (PET) hinges on accurate dose delivery. Extravasation or partial extravasation of the radiopharmaceutical dose can undermine SUV and image quality, and contribute to unnecessary imaging (time and CT dose). Topical sensor characterisation of injections has been reported, with extravasation rates ranging from 9% to 23% for 18F-FDG after manual injection. METHOD A single site, single PET/CT scanner was used to characterise injections using an autoinjector with standardised apparatus, flush volume and infusion rate using 18F-FDG, 68Ga-PSMA and 68Ga-DOTATATE; more reflective of Australian PET facilities. 296 patients with topical application of LARA sensors were retrospectively analysed. RESULTS Only 1.1% of studies showed evidence of partial dose extravasation. In total, 9.1% were identified to have an injection anomaly (including venous retention). No statistically significant differences were noted across the radiopharmaceuticals for demographic data. Although not demonstrating a statistically significant correlation, there was more extravasated doses associated with female patients (P = .334), right side (P = .372), and hand injections (P = .539). Extravasation was independent of dose administered (P = .495), the radiopharmaceutical (P = .887), who injected the dose (P = .343), height (P = .438), weight (P = .607) or age (P = .716). Extravasation was associated with higher glucose levels (P < .001), higher t-half (P = .019) and higher aUCR10, tc50, aUCR1 and c1 (all P < .001). CONCLUSION Topical monitoring and characterisation of PET dose administration is possible and practical with the LARA device. Extravasation and partial extravasation of PET doses are not only readily detected but they are also preventable. The LARA device can provide the insights into variables that could eliminate extravasation as a cause of image quality or SUV accuracy issues.
Collapse
Affiliation(s)
- Stephanie Sanchez
- Faculty of Science, Charles Sturt University, Port Macquarie, Australia
| | - Geoffrey M Currie
- Faculty of Science, Charles Sturt University, Wagga Wagga, Australia.
| |
Collapse
|
9
|
Osborne DR, Acuff SN, Fang M, Weaver MD, Fu Y. Assessing and reducing PET radiotracer infiltration rates: a single center experience in injection quality monitoring methods and quality improvement. BMC Med Imaging 2020; 20:3. [PMID: 31924179 PMCID: PMC6954558 DOI: 10.1186/s12880-020-0408-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful injection of radiolabeled compounds is critical for positron emission tomography (PET) imaging. A poor quality injection limits the tracer availability in the body and can impact diagnostic results. In this study, we attempt to quantify our infiltration rates, develop an actionable quality improvement plan to reduce potentially compromised injections, and compare injection scoring to PET/CT imaging results. METHODS A commercially available system that uses external radiation detectors was used to monitor and score injection quality. This system compares the time activity curves of the bolus relative to a control reading in order to provide a score related to the quality of the injection. These injection scores were used to assess infiltration rates at our facility in order to develop and implement a quality improvement plan for our PET imaging center. Injection scores and PET imaging results were reviewed to determine correlations between image-based assessments of infiltration, such as liver SUVs, and injection scoring, as well as to gather infiltration reporting statistics by physicians. RESULTS A total of 1033 injections were monitored at our center. The phase 1 infiltration rate was 2.1%. In decision tree analysis, patients < 132.5lbs were associated with infiltrations. Additional analyses suggested patients > 127.5 lbs. with non-antecubital injections were associated with lower quality injections. Our phase 2 infiltration rate was 1.9%. Comparison of injection score to SUV showed no significant correlation and indicated that only 63% of suspected infiltrations were visible on PET/CT imaging. CONCLUSIONS Developing a quality improvement plan and monitoring PET injections can lead to reduced infiltration rates. No significant correlation between reference SUVs and injection score provides evidence that determination of infiltration based on PET images alone may be limited. Results also indicate that the number of infiltrated PET injections is under-reported.
Collapse
Affiliation(s)
- Dustin R Osborne
- University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN, 37920, USA.
| | - Shelley N Acuff
- University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN, 37920, USA
| | - Michael Fang
- University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN, 37920, USA
| | - Melissa D Weaver
- University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN, 37920, USA
| | - Yitong Fu
- University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN, 37920, USA
| |
Collapse
|
10
|
Wong TZ, Benefield T, Masters S, Kiser JW, Crowley J, Osborne D, Mawlawi O, Barnwell J, Gupta P, Mintz A, Ryan KA, Perrin SR, Lattanze RK, Townsend DW. Quality Improvement Initiatives to Assess and Improve PET/CT Injection Infiltration Rates at Multiple Centers. J Nucl Med Technol 2019; 47:326-331. [PMID: 31182666 PMCID: PMC6894099 DOI: 10.2967/jnmt.119.228098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
PET/CT radiotracer infiltration is not uncommon and is often outside the imaging field of view. Infiltration can negatively affect image quality, image quantification, and patient management. Until recently, there has not been a simple way to routinely practice PET radiopharmaceutical administration quality control and quality assurance. Our objectives were to quantify infiltration rates, determine associative factors for infiltration, and assess whether rates could be reduced at multiple centers and then sustained. Methods: A “design, measure, analyze, improve, and control” quality improvement methodology requiring novel technology was used to try to improve PET/CT injection quality. Teams were educated on the importance of quality injections. Baseline infiltration rates were measured, center-specific associative factors were analyzed, team meetings were held, improvement plans were established and executed, and rates remeasured. To ensure that injection-quality gains were retained, real-time feedback and ongoing monitoring were used. Sustainability was assessed. Results: Seven centers and 56 technologists provided data on 5,541 injections. The centers’ aggregated baseline infiltration rate was 6.2% (range, 2%–16%). On the basis of their specific associative factors, 4 centers developed improvement plans and reduced their aggregated infiltration rate from 8.9% to 4.6% (P < 0.0001). Ongoing injection monitoring showed sustainability. Significant variation was found in center- and technologist-level infiltration rates (P < 0.0001 and P = 0.0020, respectively). Conclusion: A quality improvement approach with new technology can help centers measure infiltration rates, determine associative factors, implement interventions, and improve and sustain injection quality. Because PET/CT images help guide patient management, the monitoring and improvement of radiotracer injection quality are important.
Collapse
Affiliation(s)
- Terence Z Wong
- Duke University, Durham, North Carolina.,University of North Carolina, Chapel Hill, North Carolina
| | - Thad Benefield
- University of North Carolina, Chapel Hill, North Carolina
| | - Shane Masters
- Wake Forest Baptist Medical Center, Winston Salem, North Carolina
| | | | | | - Dustin Osborne
- Radiology/Molecular Imaging and Translational Research, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Osama Mawlawi
- Department of Imaging Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas
| | | | - Pawan Gupta
- Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA Health, Los Angeles, California
| | - Akiva Mintz
- Columbia University Medical Center, New York, New York
| | | | | | | | | |
Collapse
|