1
|
Luo J, Bian C, Liu M, Fang Y, Jin L, Yu R, Huang H. Research on gene editing and immunosuppressants in kidney xenotransplantation. Transpl Immunol 2025; 89:102184. [PMID: 39900229 DOI: 10.1016/j.trim.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Gene-edited pig organ transplantation can solve the serious shortage of human donor organs. Currently, xenotransplantation is rapidly developing and has made significant breakthroughs. The use of GTKO (Gal knockout) pigs is an important step forward. The subsequent knockout of three genes combined with the transfer of immune-related genes effectively prolonged the survival time of non-human primate (NHP) transplantation in xenotransplantation. Due to the success of allogeneic kidney transplantation on NHP, this gene editing protocol was recently applied to clinical patients. Two patients underwent allogeneic kidney transplantation and survived for 51 days and 47 days. Exceeding the hyperacute rejection period proves that appropriate gene editing strategies and the combination of immunosuppressive agents contribute to the success of xenotransplantation. To further enhance the feasibility of pig kidney xenograft, this article mainly explores the effects of the NHP xenograft gene editing scheme and immunosuppressants on prolonging transplant survival time.
Collapse
Affiliation(s)
- JiaJiao Luo
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - CongWen Bian
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Liu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Yu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Guo Z, Zhao Q, Jia Z, Huang C, Wang D, Ju W, Zhang J, Yang L, Huang S, Chen M, Zhu X, Hu A, Ma Y, Wu L, Chen Y, Han M, Tang Y, Wang G, Wang L, Li L, Xiong W, Zhang Z, Shen Y, Tang Z, Zhu C, Chen X, Hu X, Guo Y, Chen H, Ma Y, Zhang T, Huang S, Zeng P, Lai S, Wang T, Chen Z, Gong J, Yu J, Sun C, Li C, Tan H, Liu Y, Dong Y, Sun C, Liao B, Ren J, Zhou Z, Andrea S, Björn N, Cai C, Gong F, Rong J, Huang W, Guan X, Clavien PA, Stefan TG, Huang J, He X. A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease. J Hepatol 2023; 79:394-402. [PMID: 37086919 DOI: 10.1016/j.jhep.2023.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND & AIMS Ischemia-reperfusion injury (IRI) has thus far been considered as an inevitable component of organ transplantation, compromising outcomes, and limiting organ availability. Ischemia-free organ transplantation is a novel approach designed to avoid IRI, with the potential to improve outcomes. METHODS In this randomized-controlled clinical trial, recipients of livers from donors after brain death were randomly assigned to receive either an ischemia-free or a 'conventional' transplant. The primary endpoint was the incidence of early allograft dysfunction. Secondary endpoints included complications related to graft IRI. RESULTS Out of 68 randomized patients, 65 underwent transplants and were included in the analysis. 32 patients received ischemia-free liver transplantation (IFLT), and 33 received conventional liver transplantation (CLT). Early allograft dysfunction occurred in two recipients (6%) randomized to IFLT and in eight (24%) randomized to CLT (difference -18%; 95% CI -35% to -1%; p = 0.044). Post-reperfusion syndrome occurred in three recipients (9%) randomized to IFLT and in 21 (64%) randomized to CLT (difference -54%; 95% CI -74% to -35%; p <0.001). Non-anastomotic biliary strictures diagnosed with protocol magnetic resonance cholangiopancreatography at 12 months were observed in two recipients (8%) randomized to IFLT and in nine (36%) randomized to CLT (difference, -28%; 95% CI -50% to -7%; p = 0.014). The comprehensive complication index at 1 year after transplantation was 30.48 (95% CI 23.25-37.71) in the IFLT group vs. 42.14 (95% CI 35.01-49.26) in the CLT group (difference -11.66; 95% CI -21.81 to -1.51; p = 0.025). CONCLUSIONS Among patients with end-stage liver disease, IFLT significantly reduced complications related to IRI compared to a conventional approach. CLINICAL TRIAL REGISTRATION chictr.org. ChiCTR1900021158. IMPACT AND IMPLICATIONS Ischemia-reperfusion injury has thus far been considered as an inevitable event in organ transplantation, compromising outcomes and limiting organ availability. Ischemia-free liver transplantation is a novel approach of transplanting donor livers without interruption of blood supply. We showed that in patients with end-stage liver disease, ischemia-free liver transplantation, compared with a conventional approach, led to reduced complications related to ischemia-reperfusion injury in this randomized trial. This new approach is expected to change the current practice in organ transplantation, improving transplant outcomes, increasing organ utilization, while providing a clinical model to delineate the impact of organ injury on alloimmunity.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, China.
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zehua Jia
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yinghua Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Guodong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Lifen Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yuekun Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhaoxia Tang
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Xiaoxiang Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoguang Hu
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiwen Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Honghui Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yihao Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Shunwei Huang
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Zeng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Simei Lai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Tielong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zhitao Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jinlong Gong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jia Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chang Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiyi Tan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yuqi Dong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Ren
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenhai Zhou
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Schlegel Andrea
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20100, Italy
| | - Nashan Björn
- Organ Transplantation Center, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230001, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anesthesia Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Zurich 8044, Switzerland
| | - Tullius G Stefan
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Jiefu Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China.
| |
Collapse
|
4
|
Buijk MS, Dijkshoorn M, Dwarkasing RS, Chorley AC, Minnee RC, Boehnert MU. Accuracy of preoperative liver volumetry in living donor liver transplantation—A systematic review and meta-analysis. JOURNAL OF LIVER TRANSPLANTATION 2023. [DOI: 10.1016/j.liver.2023.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
5
|
Foguenne M, MacMillan S, Kron P, Nath J, Devresse A, De Meyer M, Michel M, Hosgood S, Darius T. Current Evidence and Future Perspectives to Implement Continuous and End-Ischemic Use of Normothermic and Oxygenated Hypothermic Machine Perfusion in Clinical Practice. J Clin Med 2023; 12:3207. [PMID: 37176647 PMCID: PMC10178893 DOI: 10.3390/jcm12093207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The use of high-risk renal grafts for transplantation requires the optimization of pretransplant assessment and preservation reconditioning strategies to decrease the organ discard rate and to improve short- and long-term clinical outcomes. Active oxygenation is increasingly recognized to play a central role in dynamic preservation strategies, independent of preservation temperature, to recondition mitochondria and to restore the cellular energy profile. The oxygen-related decrease in mitochondrial succinate accumulation ameliorates the harmful effects of ischemia-reperfusion injury. The differences between normothermic and hypothermic machine perfusion with regard to organ assessment, preservation, and reconditioning, as well as the logistic and economic implications, are factors to take into consideration for implementation at a local level. Therefore, these different techniques should be considered complementary to the perfusion strategy selected depending on functional intention and resource availability. This review provides an overview of the current clinical evidence of normothermic and oxygenated hypothermic machine perfusion, either as a continuous or end-ischemic preservation strategy, and future perspectives.
Collapse
Affiliation(s)
- Maxime Foguenne
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Serena MacMillan
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Philipp Kron
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK
| | - Arnaud Devresse
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Nephrology, University Clinics Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Martine De Meyer
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Mourad Michel
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Darius
- Surgery and Abdominal Transplant Unit, Department of Surgery, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Metabolomics Differences of the Donor Livers Between In Situ and Ex Situ Conditions During Ischemia-free Liver Transplantation. Transplantation 2023; 107:e139-e151. [PMID: 36857152 PMCID: PMC10125122 DOI: 10.1097/tp.0000000000004529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ischemia-free liver transplantation (IFLT) has been innovated to avoid graft ischemia during organ procurement, preservation, and implantation. However, the metabolism activity of the donor livers between in the in situ and ex situ normothermic machine perfusion (NMP) conditions, and between standard criteria donor and extend criteria donor remains unknown. METHODS During IFLT, plasma samples were collected both at the portal vein and hepatic vein of the donor livers in situ during procurement and ex situ during NMP. An ultra-high performance liquid chromatography-mass spectrometry was conducted to investigate the common and distinct intraliver metabolite exchange. RESULTS Profound cysteine and methionine metabolism, and aminoacyl-tRNA biosynthesis were found in both in situ and ex situ conditions. However, obvious D-arginine and D-ornithine metabolism, arginine and proline metabolism were only found in the in situ condition. The suppressed activities of the urea cycle pathway during ex situ condition were confirmed in an RNA expression level. In addition, compared with extend criteria donor group, standard criteria donor group had more active intraliver metabolite exchange in metabonomics level. Furthermore, we found that the relative concentration of p-cresol, allocystathionine, L-prolyl-L-proline in the ex situ group was strongly correlated with peak alanine aminotransferase and aspartate aminotransferase at postoperative days 1-7. CONCLUSIONS In the current study, we show the common and distinct metabolism activities during IFLT. These findings might provide insights on how to modify the design of NMP device, improve the perfusate components, and redefine the criteria of graft viability.
Collapse
|
7
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
8
|
Abstract
The past decade has been the foreground for a radical revolution in the field of preservation in abdominal organ transplantation. Perfusion has increasingly replaced static cold storage as the preferred and even gold standard preservation method for marginal-quality organs. Perfusion is dynamic and offers several advantages in comparison with static cold storage. These include the ability to provide a continuous supply of new metabolic substrates, clear metabolic waste products, and perform some degree of organ viability assessment before actual transplantation in the recipient. At the same time, the ongoing importance of static cold storage cannot be overlooked, in particular when it comes to logistical and technical convenience and cost, not to mention the fact that it continues to work well for the majority of transplant allografts. The present review article provides an overview of the fundamental concepts of organ preservation, providing a brief history of static cold preservation and description of the principles behind and basic components of cold preservation solutions. An evaluation of current evidence supporting the use of different preservation solutions in abdominal organ transplantation is provided. As well, the range of solutions used for machine perfusion of abdominal organs is described, as are variations in their compositions related to changing metabolic needs paralleling the raising of the temperature of the perfusate from hypothermic to normothermic range. Finally, appraisal of new preservation solutions that are on the horizon is provided.
Collapse
|
9
|
Hofmann J, Pühringer M, Steinkellner S, Holl AS, Meszaros AT, Schneeberger S, Troppmair J, Hautz T. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants (Basel) 2022; 12:antiox12010031. [PMID: 36670893 PMCID: PMC9855021 DOI: 10.3390/antiox12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The implementation of ex vivo organ machine perfusion (MP) into clinical routine undoubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its underlying mechanisms in a near to physiological setting. However, research using whole organs is limited and associated with high costs. Here, in vitro models well suited for early stage research or for studying particular disease mechanisms come into play. While cell lines convince with simplicity, they do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide an even closer modelling of physiologic organ function and spatial orientation. In this review, we discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro models to further study the underlying mechanisms and to pretest potential treatment strategies.
Collapse
|
10
|
Lepoittevin M, Giraud S, Kerforne T, Allain G, Thuillier R, Hauet T. How to improve results after DCD (donation after circulation death). Presse Med 2022; 51:104143. [PMID: 36216034 DOI: 10.1016/j.lpm.2022.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
| | - Sébastien Giraud
- Unité UMR U1082, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thomas Kerforne
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France
| | - Géraldine Allain
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France
| | - Raphaël Thuillier
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thierry Hauet
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire « Survival Optimization in Organ Transplantation », CHU de Poitiers, 2 rue de la Milétrie - CS 90577, 86021 Poitiers Cedex, France.
| |
Collapse
|
11
|
Preoperative Function Assessment of Ex Vivo Kidneys with Supervised Machine Learning Based on Blood and Urine Markers Measured during Normothermic Machine Perfusion. Biomedicines 2022; 10:biomedicines10123055. [PMID: 36551812 PMCID: PMC9776285 DOI: 10.3390/biomedicines10123055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Establishing an objective quality assessment of an organ prior to transplantation can help prevent unnecessary discard of the organ and reduce the probability of functional failure. In this regard, normothermic machine perfusion (NMP) offers new possibilities for organ evaluation. However, to date, few studies have addressed the identification of markers and analytical tools to determine graft quality. In this study, function and injury markers were measured in blood and urine during NMP of 26 porcine kidneys and correlated with ex vivo inulin clearance behavior. Significant differentiation of kidneys according to their function could be achieved by oxygen consumption, oxygen delivery, renal blood flow, arterial pressure, intrarenal resistance, kidney temperature, relative urea concentration, and urine production. In addition, classifications were accomplished with supervised learning methods and histological analysis to predict renal function ex vivo. Classificators (support vector machines, k-nearest-neighbor, logistic regression and naive bayes) based on relevant markers in urine and blood achieved 75% and 83% accuracy in the validation and test set, respectively. A correlation between histological damage and function could not be detected. The measurement of blood and urine markers provides information of preoperative renal quality, which can used in future to establish an objective quality assessment.
Collapse
|
12
|
Reyna-Sepulveda F, Badrudin D, Gala-Lopez BL. Graft survival after kidney transplantation with standard versus prolonged kidney procurement time. Can J Surg 2022; 65:E573-E579. [PMID: 36302131 PMCID: PMC9451504 DOI: 10.1503/cjs.005721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND During kidney procurement, after ice removal, kidneys located in the retroperitoneum are at risk for rewarming owing to the time taken to retrieve other abdominal and thoracic organs, which may lead to poorer outcomes. The purpose of this study was to evaluate the impact of prolonged kidney procurement time (PKP) on outcomes of kidney transplantation performed at the Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada. METHODS We retrospectively reviewed the cases of all adult (age ≥ 18 yr) patients who underwent kidney transplantation at the Queen Elizabeth II Health Sciences Centre between Jan. 1, 2010, and Dec. 31, 2015. We included all patients who received kidney transplants from deceased donors with a minimum follow-up period of 3 years. We defined PKP as more than 65 minutes from aortic cross-clamp to final organ extraction, and standard procurement time (SP) as 65 minutes or less. RESULTS Among the 455 transplantation procedures performed during the study period, we reviewed the cases of 145 patients who received kidneys from Nova Scotian donors and were followed in Nova Scotia. No statistically significant differences were seen in outcomes between kidney-only (n = 46) and multiorgan (n = 99) procurement, although more organs from kidney-only donors than multiorgan donors had a Kidney Donor Profile Index score greater than 50% (32 [69.6%] v. 48 [48.5%], p < 0.01). Compared to the SP group (n = 115), the PKP group (n = 30) had a higher rate of 30-day graft loss (6.7% v. 0.0%, p < 0.01), a higher incidence of de novo formation of donor-specific antibodies (3 [10.0%] v. 1 [0.9%], p < 0.01) and a lower 5-year graft survival rate (90.0% v. 97.4%, p = 0.03). Left kidneys remained 11 minutes longer on the donor than right kidneys when multiorgan procurement was performed (p < 0.01), and their 5-year survival rate was significantly lower than that of right kidneys (p = 0.03). CONCLUSION Procurement times longer than 65 minutes may be associated with poorer outcomes after kidney transplantation. Measures to reduce kidney exposure to rewarming during procurement may improve long-term outcomes.
Collapse
Affiliation(s)
| | - David Badrudin
- From the Multi-Organ Transplant Program, Department of Surgery, Dalhousie University, Halifax, NS
| | - Boris L Gala-Lopez
- From the Multi-Organ Transplant Program, Department of Surgery, Dalhousie University, Halifax, NS
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Organ transplantation is one of the miracles in medicine in the 20th century. However, in the current practice, all the donor organs suffer from ischemia/reperfusion injury (IRI), which compromise transplant outcomes and limits organ availability. Continuous efforts have been made in organ machine perfusion to ameliorate IRI. In 2017, ischemia-free organ transplantation (IFOT) was first proposed with the aim of complete avoidance of IRI in organ transplantation. The purpose of this review is to highlight the latest progresses in IFOT. RECENT FINDINGS The feasibility of IFOT has been validated in liver, kidney, and heart transplantation. The results of the first nonrandomized controlled study demonstrate that ischemia-free liver transplantation (IFLT) may improve transplant outcomes and increase organ availability. Furthermore, laboratory results, including the absence of the characteristic pathological changes, gene transcription and metabolic reprogramming, as well as sterile inflammation activation in IFLT grafts, suggest the virtual avoidance of graft IRI in IFLT. SUMMARY IFOT might change the current practice by abrogating graft IRI. IFOT also provides a unique model to investigate the interaction between allograft IRI and rejection. The next steps will be to simplify the technique, make long-distance transportation possible and evaluate cost-effectiveness.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Tao Luo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Runbing Mo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| |
Collapse
|
14
|
Lepoittevin M, Giraud S, Kerforne T, Barrou B, Badet L, Bucur P, Salamé E, Goumard C, Savier E, Branchereau J, Battistella P, Mercier O, Mussot S, Hauet T, Thuillier R. Preservation of Organs to Be Transplanted: An Essential Step in the Transplant Process. Int J Mol Sci 2022; 23:ijms23094989. [PMID: 35563381 PMCID: PMC9104613 DOI: 10.3390/ijms23094989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Organ transplantation remains the treatment of last resort in case of failure of a vital organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted each year. This situation has led to the consideration of recent donor populations (deceased by brain death with extended criteria or deceased after circulatory arrest). These organs are sensitive to the conditions of conservation during the ischemia phase, which have an impact on the graft’s short- and long-term fate. This evolution necessitates a more adapted management of organ donation and the optimization of preservation conditions. In this general review, the different aspects of preservation will be considered. Initially done by hypothermia with the help of specific solutions, preservation is evolving with oxygenated perfusion, in hypothermia or normothermia, aiming at maintaining tissue metabolism. Preservation time is also becoming a unique evaluation window to predict organ quality, allowing repair and/or optimization of recipient choice.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Sébastien Giraud
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Thomas Kerforne
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Cardio-Thoracic and Vascular Surgery Intensive Care Unit, Coordination of P.M.O., CHU Poitiers, 86021 Poitiers, France
| | - Benoit Barrou
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Sorbonne Université Campus Pierre et Marie Curie, Faculté de Médecine, 75005 Paris, France
- Service Médico-Chirurgical de Transplantation Rénale, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
| | - Lionel Badet
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Faculté de Médecine, Campus Lyon Santé Est, Université Claude Bernard, 69622 Lyon, France
- Service d’Urologie et Transplantation, Hospices Civils de Lyon, Hôpital Edouard-Herriot, 69003 Lyon, France
| | - Petru Bucur
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Ephrem Salamé
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Claire Goumard
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Eric Savier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Julien Branchereau
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service d’Urologie et de Transplantation, CHU de Nantes, 44000 Nantes, France
| | - Pascal Battistella
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Cardiologie et Maladies Vasculaires, CHU de Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Olaf Mercier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Sacha Mussot
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Thierry Hauet
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
- Correspondence:
| | - Raphael Thuillier
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| |
Collapse
|
15
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Markmann JF, Abouljoud MS, Ghobrial RM, Bhati CS, Pelletier SJ, Lu AD, Ottmann S, Klair T, Eymard C, Roll GR, Magliocca J, Pruett TL, Reyes J, Black SM, Marsh CL, Schnickel G, Kinkhabwala M, Florman SS, Merani S, Demetris AJ, Kimura S, Rizzari M, Saharia A, Levy M, Agarwal A, Cigarroa FG, Eason JD, Syed S, Washburn WK, Parekh J, Moon J, Maskin A, Yeh H, Vagefi PA, MacConmara MP. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg 2022; 157:189-198. [PMID: 34985503 PMCID: PMC8733869 DOI: 10.1001/jamasurg.2021.6781] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Question Can oxygenated portable normothermic perfusion of deceased donor livers for transplant improve outcomes compared with the current standard of care using ischemic cold storage? Findings In this multicenter randomized clinical trial of 300 recipients of liver transplants with the donor liver preserved by either normothermic perfusion or conventional ischemic cold storage, normothermic machine perfusion resulted in decreased early liver graft injury and ischemic biliary complications and greater organ utilization. Meaning In this study, portable normothermic oxygenated machine perfusion of donor liver grafts resulted in improved outcomes after liver transplant and in more livers being transplanted. Importance Ischemic cold storage (ICS) of livers for transplant is associated with serious posttransplant complications and underuse of liver allografts. Objective To determine whether portable normothermic machine perfusion preservation of livers obtained from deceased donors using the Organ Care System (OCS) Liver ameliorates early allograft dysfunction (EAD) and ischemic biliary complications (IBCs). Design, Setting, and Participants This multicenter randomized clinical trial (International Randomized Trial to Evaluate the Effectiveness of the Portable Organ Care System Liver for Preserving and Assessing Donor Livers for Transplantation) was conducted between November 2016 and October 2019 at 20 US liver transplant programs. The trial compared outcomes for 300 recipients of livers preserved using either OCS (n = 153) or ICS (n = 147). Participants were actively listed for liver transplant on the United Network of Organ Sharing national waiting list. Interventions Transplants were performed for recipients randomly assigned to receive donor livers preserved by either conventional ICS or the OCS Liver initiated at the donor hospital. Main Outcomes and Measures The primary effectiveness end point was incidence of EAD. Secondary end points included OCS Liver ex vivo assessment capability of donor allografts, extent of reperfusion syndrome, incidence of IBC at 6 and 12 months, and overall recipient survival after transplant. The primary safety end point was the number of liver graft–related severe adverse events within 30 days after transplant. Results Of 293 patients in the per-protocol population, the primary analysis population for effectiveness, 151 were in the OCS Liver group (mean [SD] age, 57.1 [10.3] years; 102 [67%] men), and 142 were in the ICS group (mean SD age, 58.6 [10.0] years; 100 [68%] men). The primary effectiveness end point was met by a significant decrease in EAD (27 of 150 [18%] vs 44 of 141 [31%]; P = .01). The OCS Liver preserved livers had significant reduction in histopathologic evidence of ischemia-reperfusion injury after reperfusion (eg, less moderate to severe lobular inflammation: 9 of 150 [6%] for OCS Liver vs 18 of 141 [13%] for ICS; P = .004). The OCS Liver resulted in significantly higher use of livers from donors after cardiac death (28 of 55 [51%] for the OCS Liver vs 13 of 51 [26%] for ICS; P = .007). The OCS Liver was also associated with significant reduction in incidence of IBC 6 months (1.3% vs 8.5%; P = .02) and 12 months (2.6% vs 9.9%; P = .02) after transplant. Conclusions and Relevance This multicenter randomized clinical trial provides the first indication, to our knowledge, that normothermic machine perfusion preservation of deceased donor livers reduces both posttransplant EAD and IBC. Use of the OCS Liver also resulted in increased use of livers from donors after cardiac death. Together these findings indicate that OCS Liver preservation is associated with superior posttransplant outcomes and increased donor liver use. Trial Registration ClinicalTrials.gov Identifier: NCT02522871
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Corey Eymard
- University of Tennessee Health Science Center, Memphis
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - James D Eason
- University of Tennessee Health Science Center, Memphis
| | | | | | | | - Jang Moon
- Mount Sinai Health System, New York, New York
| | | | - Heidi Yeh
- Massachusetts General Hospital, Boston
| | | | | |
Collapse
|
17
|
Abstract
Hypothermic and normothermic machine perfusion in kidney transplantation are purported to exert a beneficial effect on post-transplant outcomes compared to the traditionally used method of static cold storage. Kidney perfusion techniques provide a window for organ reconditioning and quality assessment. However, how best to deliver these preservation methods or improve organ quality has not yet been conclusively defined. This review summarises the promising advances in machine perfusion science in recent years, which have the potential to further improve early graft function and prolong graft survival.
Collapse
|
18
|
Guo Z, Zhao Q, Huang S, Huang C, Wang D, Yang L, Zhang J, Chen M, Wu L, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Sun C, Xiong W, Shen Y, Chen X, Xu J, Wang T, Ma Y, Hu A, Chen Y, Zhu X, Rong J, Cai C, Gong F, Guan X, Huang W, Ko DSC, Li X, Tullius SG, Huang J, Ju W, He X. Ischaemia-free liver transplantation in humans: a first-in-human trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 16:100260. [PMID: 34590063 PMCID: PMC8406025 DOI: 10.1016/j.lanwpc.2021.100260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Background Ischaemia-reperfusion injury is considered an inevitable component of organ transplantation, compromising organ quality and outcomes. Although several treatments have been proposed, none has avoided graft ischaemia and its detrimental consequences. Methods Ischaemia-free liver transplantation (IFLT) comprises surgical techniques enabling continuous oxygenated blood supply to the liver of brain-dead donor during procurement, preservation, and implantation using normothermic machine perfusion technology. In this non-randomised study, 38 donor livers were transplanted using IFLT and compared to 130 conventional liver transplants (CLT). Findings Two recipients (5•3%) in the IFLT group experienced early allograft dysfunction, compared to 50•0% in patients receiving conventional transplants (absolute risk difference, 44•8%; 95% confidence interval, 33•6-55•9%). Recipients of IFLT had significantly reduced median (IQR) peak aspartate aminotransferase levels within the first week compared to CLT recipients (365, 238-697 vs 1445, 791-3244 U/L, p<0•001); likewise, median total bilirubin levels on day 7 were significantly lower (2•34, 1•39-4•09 mg/dL) in the IFLT group than in the CLT group (5•10, 1•90-11•65 mg/dL) (p<0•001). Moreover, IFLT recipients had a shorter median intensive care unit stay (1•48, 0•75-2•00 vs 1•81, 1•00-4•58 days, p=0•006). Both one-month recipient (97•4% vs 90•8%, p=0•302) and graft survival (97.4% vs 90•0%, p=0•195) were better for IFLT than CLT, albeit differences were not statistically significant. Subgroup analysis showed that the extended criteria donor livers transplanted using the IFLT technique yielded faster post-transplant recovery than did the standard criteria donor livers transplanted using the conventional approach. Interpretation IFLT provides a novel approach that may improve outcomes, and allow the successful utilisation of extended criteria livers. Funding This study was funded by National Natural Science Foundation of China, Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology, and Guangdong Provincial international Cooperation Base of Science and Technology. Panel: Research in context.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou 510080, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linwei Wu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Chengjun Sun
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Wei Xiong
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuekun Shen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiang Chen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Tielong Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anaesthesia Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenqi Huang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dicken Shiu-Chung Ko
- Department of Surgery, Steward St. Elizabeth's Medical Centre, Tufts University School of Medicine, Boston, MA 02115, USA
| | - Xianchang Li
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
- Immunobiology and Transplant Science Centre, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiefu Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Department of Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, China
| |
Collapse
|
19
|
Hosgood SA, Brown RJ, Nicholson ML. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021; 105:e202-e214. [PMID: 33982904 PMCID: PMC8549459 DOI: 10.1097/tp.0000000000003679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
The use of cold preservation solutions to rapidly flush and cool the kidney followed by static cold storage in ice has been the standard kidney preservation technique for the last 50 y. Nonetheless, changing donor demographics that include organs from extended criteria donors and donation after circulatory death donors have led to the adoption of more diverse techniques of preservation. Comparison of hypothermic machine perfusion and static cold storage techniques for deceased donor kidneys has long been debated and is still contested by some. The recent modification of hypothermic machine perfusion techniques with the addition of oxygen or perfusion at subnormothermic or near-normothermic temperatures are promising strategies that are emerging in clinical practice. In addition, the use of normothermic regional perfusion to resuscitate abdominal organs of donation after circulatory death donors in situ before cold flushing is also increasingly being utilized. This review provides a synopsis of the different types of preservation techniques including their mechanistic effects and the outcome of their application in clinical practice for different types of donor kidney.
Collapse
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel J. Brown
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael L. Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
20
|
Chen C, Chen M, Lin X, Guo Y, Ma Y, Chen Z, Ju W, He X. En bloc procurement of porcine abdominal multiple organ block for ex situ normothermic machine perfusion: a technique for avoiding initial cold preservation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1116. [PMID: 34430557 PMCID: PMC8350716 DOI: 10.21037/atm-21-1308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Background Normothermic machine perfusion (NMP) is a technique that maintains organs ex situ with normal metabolism, and organ function can be better preserved. The study of multiple-organ NMP is rarely reported. Multiple organ block (MOB) is a self-perfusing system for maintaining multiple organs ex situ, and porcine MOBs have been successfully preserved for 18 to 37 h. Due to the above context, we conceived to maintain abdominal multiple organ block (AMOB) ex situ utilizing NMP technology. Methods AMOBs were procured from Ba-Ma miniature pigs through en bloc procurement surgery. The process of cold preservation was eliminated between the procurement and machine perfusion, and a few minutes of warm ischemia emerged. Autologous whole blood was collected during procurement surgery as a perfusate component in the beginning. Results The median time of procurement surgery was approximately 220 min, and the median time of warm ischemia was 300 sec. Cases 1 and 2 suffered from repeated hypotension during the procurement surgery, and case 2 exhibited hemorrhage. After improved and optimized procurement processes, the vital signs of cases 3 to 5 remained stable during procurement. In the NMP phase, the flow increased slowly in cases 1 and 2 and did not remain stable even after continuous infusion of a high-dose vasodilator. The lactic acid level rapidly increased, and the levels of ALT and AST were obviously higher than those in cases 3 to 5. In contrast, the flow rate increased smoothly in cases 3 to 5. The lactic acid level remained stable during the first 10 h of perfusion. Conclusions AMOB procurement from heart-beating pigs for NMP without initial cold preservation is technically feasible.
Collapse
Affiliation(s)
- Chuanbao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Division of General Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yihao Ma
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
21
|
Darius T, Nath J, Mourad M. Simply Adding Oxygen during Hypothermic Machine Perfusion to Combat the Negative Effects of Ischemia-Reperfusion Injury: Fundamentals and Current Evidence for Kidneys. Biomedicines 2021; 9:993. [PMID: 34440197 PMCID: PMC8394874 DOI: 10.3390/biomedicines9080993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The use of high-risk renal grafts for transplantation requires optimization of pretransplant preservation and assessment strategies to improve clinical outcomes as well as to decrease organ discard rate. With oxygenation proposed as a resuscitative measure during hypothermic machine preservation, this review provides a critical overview of the fundamentals of active oxygenation during hypothermic machine perfusion, as well as the current preclinical and clinical evidence and suggests different strategies for clinical implementation.
Collapse
Affiliation(s)
- Tom Darius
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jay Nath
- Department of Renal Transplantation, Southmead Hospital Bristol, Bristol BS10 5NB, UK;
| | - Michel Mourad
- Surgery and Abdominal Transplant Unit, University Clinics Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
22
|
Heylen L, Pirenne J, Naesens M, Sprangers B, Jochmans I. "Time is tissue"-A minireview on the importance of donor nephrectomy, donor hepatectomy, and implantation times in kidney and liver transplantation. Am J Transplant 2021; 21:2653-2661. [PMID: 33759371 DOI: 10.1111/ajt.16580] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
Donor organs are exposed to sequential temperature changes during the transplantation process. The role of donor warm ischemia and cold ischemia times on post-transplant outcomes has been extensively studied. Much less attention has been paid to the transient ischemia occurring during donor organ removal and implantation. Recently, it has become clear that prolonged donor nephrectomy and implantation time are independently associated with delayed graft function after kidney transplantation. In addition, implantation time correlates with post-transplant kidney graft function, histology, and survival. Similar detrimental associations of donor hepatectomy and implantation time with early allograft dysfunction, ischemic cholangiopathy, and graft and patient survival after liver transplantation have been demonstrated. This review details kidney and liver temperature changes occurring during procurement and transplantation. It summarizes the effects of the ischemia the kidney and liver sustain during these phases on short- and long-term post-transplant outcomes, advocating the standardized reporting of donor hepatectomy, donor nephrectomy, and implantation times in (inter)national registries. The review also explores strategies to protect the graft from this ischemic injury.
Collapse
Affiliation(s)
- Line Heylen
- Nephrology and Renal Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Nephrology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Jacques Pirenne
- Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium.,Immunity and Inflammation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Ina Jochmans
- Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Elliott TR, Nicholson ML, Hosgood SA. Normothermic kidney perfusion: An overview of protocols and strategies. Am J Transplant 2021; 21:1382-1390. [PMID: 32897651 DOI: 10.1111/ajt.16307] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Normothermic machine perfusion (NMP) technologies are emerging as an important adjunct in organ preservation and transplantation. NMP can enable the reduction or avoidance of cold ischemia and allows for pretransplant measurement of function and metabolic status to assess the suitability of the organ for transplantation. The key requirement of NMP is to provide an environment that is protective to the organ, ensures optimal oxygen delivery and supports metabolic function. Red blood cell-based solutions, artificial hemoglobin solutions, and acellular solutions have all been utilized in NMP. However, there is no clear consensus on perfusion protocols. A period of NMP after hypothermic preservation is the most commonly used strategy. As an alternative, several groups have developed and tested the feasibility of more prolonged periods of NMP. There are only a few reports of the application of NMP in clinical kidney transplantation and each uses different approach and conditions. This review details the rationale for NMP protocols considering duration of NMP and different perfusate compositions in experimental and clinical models. We also include a discussion on the mechanistic action of NMP, comparison of subnormothermic and hypothermic conditions, the different logistical approaches and future requirements.
Collapse
Affiliation(s)
| | | | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Hosgood SA, Hoff M, Nicholson ML. Treatment of transplant kidneys during machine perfusion. Transpl Int 2020; 34:224-232. [PMID: 32970886 DOI: 10.1111/tri.13751] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
The increasing use of donation after circulatory death (DCD) and extended criteria donor (ECD) organs has raised awareness of the need to improve the quality of kidneys for transplantation. Treating kidneys during the preservation interval could improve early and long-term graft function and survival. Dynamic modes of preservation including hypothermic machine perfusion (HMP) and normothermic machine perfusion (NMP) may provide the functional platforms to treat these kidneys. Therapies in the field of regenerative medicine including cellular therapies and genetic modification and the application of biological agents targeting ischaemia reperfusion injury (IRI) and acute rejection are a growing area of research. This review reports on the application of cellular and gene manipulating therapies, nanoparticles, anti-inflammatory agents, anti-thrombolytic agents and monoclonal antibodies administered during HMP and NMP in experimental models. The review also reports on the clinical effectiveness of several biological agents administered during HMP. All of the experimental studies provide proof of principle that therapies can be successfully delivered during HMP and NMP. However, few have examined the effects after transplantation. Evidence for clinical application during HMP is sparse and only one study has demonstrated a beneficial effect on graft function. More investigation is needed to develop perfusion strategies and investigate the different experimental approaches.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Mekhola Hoff
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|