1
|
Graabak G, Grønberg BH, Killingberg KT, Halvorsen TO. Effect of FDG PET-CT for Staging and Radiotherapy Planning - A Comparison of Cohorts From Two Randomized Trials of Thoracic Radiotherapy in Limited-Stage SCLC. JTO Clin Res Rep 2024; 5:100688. [PMID: 39286339 PMCID: PMC11404135 DOI: 10.1016/j.jtocrr.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) is recommended for staging and defining target volume in limited-stage SCLC, though the impact on outcomes compared with CT staging and elective nodal irradiation (ENI) is not well documented. We analyzed patients receiving 45 Gy/30 fractions in two randomized trials of thoracic radiotherapy (TRT) in limited-stage SCLC (HAST and THORA trials) to evaluate whether PET-CT for staging and radiotherapy planning reduces radiotoxicity and improves survival. Methods Patients in HAST were staged with CT of the thorax and upper abdomen and brain magnetic resonance imaging of the brain. Patients in THORA were staged with PET-CT in addition. All patients were to receive four courses of platinum/etoposide chemotherapy and concurrent TRT starting three to four weeks after the first chemotherapy course. In HAST, target volumes included pathological lesions on CT plus ENI of lymph node stations 4-7 (bilateral). In THORA, target volumes were limited to PET-CT-positive lesions (selective nodal irradiation [SNI]). Results A total of 149 patients were included (PET-CT/SNI: n = 76, CT/ENI: n=73); the median age was 64 years, 56% were women, 85% had PS 0 to 1, and 81% had stage III disease. The PET-CT/SNI group experienced less grade 3-4 esophagitis (18% versus 33%, p = 0.043), less grade >=1 pneumonitis (5% versus 16%, p = 0.028), and less dysphagia after TRT (mean scores on European Organisation for Research and Treatment of Cancer 13-item lung cancer module: 45 versus 72). There was no difference in median overall survival (24 versus 25 mo, p = 0.59) or progression-free survival (11 versus 11 mo, p = 0.23). Conclusions Using PET-CT for staging and target volume definition of TRT reduces acute radiotoxicity but does not improve overall or progression-free survival in limited-stage SCLC.
Collapse
Affiliation(s)
- Gustav Graabak
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristin Toftaker Killingberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tarje Onsøien Halvorsen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Frumovitz M, Morani AC, Aziz A, Jhingran A, Ramalingam P, Gonzales NR, Salvo G, Sun J, Bhosale P. PET/CT scan improves detection of metastatic disease compared with CT scan alone in women with high-grade neuroendocrine cervical cancer: a NeCTuR study. Int J Gynecol Cancer 2023; 33:1690-1694. [PMID: 37875320 DOI: 10.1136/ijgc-2023-004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE To determine the optimal imaging modality for women with high-grade neuroendocrine carcinoma of the cervix. METHODS Women with high-grade neuroendocrine carcinoma of the cervix who had undergone a computed tomography (CT) scan and combined positron emission tomography with computed tomography (PET/CT) scan within 4 weeks of each other were identified from the NeCTuR Cervical Tumor Registry. One radiologist reviewed all CT scans, and another radiologist reviewed all PET/CT scans. The radiologists denoted the presence or absence of disease at multiple sites. Each radiologist was blinded to prior reports, patient outcomes, and the readings of the other radiologist. With findings on PET/CT used as the gold standard, sensitivity, specificity, and accuracy were calculated for CT scans. RESULTS Fifty matched CT and PET/CT scans were performed in 41 patients. For detecting primary disease in the cervix, CT scan had a sensitivity of 85%, a specificity of 46%, and an accuracy of 74%. For detecting disease spread to the liver, CT scan had a sensitivity of 80%, a specificity of 89%, and an accuracy of 86%. For detecting disease spread to the lung, CT had a sensitivity of 89%, a specificity of 68%, and an accuracy of 77%. Of the 14 patients who had scans for primary disease work-up, 4 (29%) had a change in their treatment plan due to the PET/CT scan. Had treatment been prescribed on the basis of the CT scan alone, 2 patients would have been undertreated, and 2 would have been overtreated. CONCLUSION A CT scan is inferior to a PET/CT scan in assessment of metastatic disease in women with high-grade neuroendocrine carcinoma of the cervix. Almost one-third of patients with newly diagnosed high-grade neuroendocrine cervical cancer would have received incorrect therapy had treatment planning been based solely on a CT scan. We recommend a PET/CT scan for both initial work-up and surveillance in women with high-grade neuroendocrine carcinoma of the cervix.
Collapse
Affiliation(s)
- Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ajaykumar C Morani
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aatiqah Aziz
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Preetha Ramalingam
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naomi R Gonzales
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gloria Salvo
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Sun
- Department of Biostatistics, Univeristy of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priya Bhosale
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Megyesfalvi Z, Gay CM, Popper H, Pirker R, Ostoros G, Heeke S, Lang C, Hoetzenecker K, Schwendenwein A, Boettiger K, Bunn PA, Renyi-Vamos F, Schelch K, Prosch H, Byers LA, Hirsch FR, Dome B. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions. CA Cancer J Clin 2023; 73:620-652. [PMID: 37329269 DOI: 10.3322/caac.21785] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023] Open
Abstract
Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gyula Ostoros
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paul A Bunn
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Schütte W, Gütz S, Nehls W, Blum TG, Brückl W, Buttmann-Schweiger N, Büttner R, Christopoulos P, Delis S, Deppermann KM, Dickgreber N, Eberhardt W, Eggeling S, Fleckenstein J, Flentje M, Frost N, Griesinger F, Grohé C, Gröschel A, Guckenberger M, Hecker E, Hoffmann H, Huber RM, Junker K, Kauczor HU, Kollmeier J, Kraywinkel K, Krüger M, Kugler C, Möller M, Nestle U, Passlick B, Pfannschmidt J, Reck M, Reinmuth N, Rübe C, Scheubel R, Schumann C, Sebastian M, Serke M, Stoelben E, Stuschke M, Thomas M, Tufman A, Vordermark D, Waller C, Wolf J, Wolf M, Wormanns D. [Prevention, Diagnosis, Therapy, and Follow-up of Lung Cancer - Interdisciplinary Guideline of the German Respiratory Society and the German Cancer Society - Abridged Version]. Pneumologie 2023; 77:671-813. [PMID: 37884003 DOI: 10.1055/a-2029-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The current S3 Lung Cancer Guidelines are edited with fundamental changes to the previous edition based on the dynamic influx of information to this field:The recommendations include de novo a mandatory case presentation for all patients with lung cancer in a multidisciplinary tumor board before initiation of treatment, furthermore CT-Screening for asymptomatic patients at risk (after federal approval), recommendations for incidental lung nodule management , molecular testing of all NSCLC independent of subtypes, EGFR-mutations in resectable early stage lung cancer in relapsed or recurrent disease, adjuvant TKI-therapy in the presence of common EGFR-mutations, adjuvant consolidation treatment with checkpoint inhibitors in resected lung cancer with PD-L1 ≥ 50%, obligatory evaluation of PD-L1-status, consolidation treatment with checkpoint inhibition after radiochemotherapy in patients with PD-L1-pos. tumor, adjuvant consolidation treatment with checkpoint inhibition in patients withPD-L1 ≥ 50% stage IIIA and treatment options in PD-L1 ≥ 50% tumors independent of PD-L1status and targeted therapy and treatment option immune chemotherapy in first line SCLC patients.Based on the current dynamic status of information in this field and the turnaround time required to implement new options, a transformation to a "living guideline" was proposed.
Collapse
Affiliation(s)
- Wolfgang Schütte
- Klinik für Innere Medizin II, Krankenhaus Martha Maria Halle-Dölau, Halle (Saale)
| | - Sylvia Gütz
- St. Elisabeth-Krankenhaus Leipzig, Abteilung für Innere Medizin I, Leipzig
| | - Wiebke Nehls
- Klinik für Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring
| | - Torsten Gerriet Blum
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | - Wolfgang Brückl
- Klinik für Innere Medizin 3, Schwerpunkt Pneumologie, Klinikum Nürnberg Nord
| | | | - Reinhard Büttner
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Uniklinik Köln, Berlin
| | | | - Sandra Delis
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | | | - Nikolas Dickgreber
- Klinik für Pneumologie, Thoraxonkologie und Beatmungsmedizin, Klinikum Rheine
| | | | - Stephan Eggeling
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin
| | - Jochen Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - Michael Flentje
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg, Würzburg
| | - Nikolaj Frost
- Medizinische Klinik mit Schwerpunkt Infektiologie/Pneumologie, Charite Universitätsmedizin Berlin, Berlin
| | - Frank Griesinger
- Klinik für Hämatologie und Onkologie, Pius-Hospital Oldenburg, Oldenburg
| | | | - Andreas Gröschel
- Klinik für Pneumologie und Beatmungsmedizin, Clemenshospital, Münster
| | | | | | - Hans Hoffmann
- Klinikum Rechts der Isar, TU München, Sektion für Thoraxchirurgie, München
| | - Rudolf M Huber
- Medizinische Klinik und Poliklinik V, Thorakale Onkologie, LMU Klinikum Munchen
| | - Klaus Junker
- Klinikum Oststadt Bremen, Institut für Pathologie, Bremen
| | - Hans-Ulrich Kauczor
- Klinikum der Universität Heidelberg, Abteilung Diagnostische Radiologie, Heidelberg
| | - Jens Kollmeier
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | | | - Marcus Krüger
- Klinik für Thoraxchirurgie, Krankenhaus Martha-Maria Halle-Dölau, Halle-Dölau
| | | | - Miriam Möller
- Krankenhaus Martha-Maria Halle-Dölau, Klinik für Innere Medizin II, Halle-Dölau
| | - Ursula Nestle
- Kliniken Maria Hilf, Klinik für Strahlentherapie, Mönchengladbach
| | | | - Joachim Pfannschmidt
- Klinik für Thoraxchirurgie, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin
| | - Martin Reck
- Lungeclinic Grosshansdorf, Pneumologisch-onkologische Abteilung, Grosshansdorf
| | - Niels Reinmuth
- Klinik für Pneumologie, Thorakale Onkologie, Asklepios Lungenklinik Gauting, Gauting
| | - Christian Rübe
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Homburg
| | | | | | - Martin Sebastian
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt
| | - Monika Serke
- Zentrum für Pneumologie und Thoraxchirurgie, Lungenklinik Hemer, Hemer
| | | | - Martin Stuschke
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Essen, Essen
| | - Michael Thomas
- Thoraxklinik am Univ.-Klinikum Heidelberg, Thorakale Onkologie, Heidelberg
| | - Amanda Tufman
- Medizinische Klinik und Poliklinik V, Thorakale Onkologie, LMU Klinikum München
| | - Dirk Vordermark
- Universitätsklinik und Poliklinik für Strahlentherapie, Universitätsklinikum Halle, Halle
| | - Cornelius Waller
- Klinik für Innere Medizin I, Universitätsklinikum Freiburg, Freiburg
| | | | - Martin Wolf
- Klinikum Kassel, Klinik für Onkologie und Hämatologie, Kassel
| | - Dag Wormanns
- Evangelische Lungenklinik, Radiologisches Institut, Berlin
| |
Collapse
|
5
|
Kersting D, Sandach P, Sraieb M, Wiesweg M, Metzenmacher M, Darwiche K, Oezkan F, Bölükbas S, Stuschke M, Umutlu L, Nader M, Hamacher R, Fendler WP, Wienker J, Eberhardt WEE, Schuler M, Herrmann K, Hautzel H. 68Ga-SSO-120 PET for Initial Staging of Small Cell Lung Cancer Patients: A Single-Center Retrospective Study. J Nucl Med 2023; 64:1540-1549. [PMID: 37474272 DOI: 10.2967/jnumed.123.265664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
PET imaging using the somatostatin receptor 2 (SSTR2) antagonist satoreotide trizoxetan (SSO-120, previously OPS-202) could offer accurate tumor detection and screening for SSTR2-antagonist radionuclide therapy in patients with SSTR2-expressing small cell lung cancer (SCLC). The aim of this single-center study was to investigate tumor uptake and detection rates of 68Ga-SSO-120 in comparison to 18F-FDG PET in the initial staging of SCLC patients. Methods: Patients with newly diagnosed SCLC who underwent additional whole-body 68Ga-SSO-120 PET/CT during the initial diagnostic workup were retrospectively included. The mean administered activity was 139 MBq, and the mean uptake time was 60 min. Gold-standard staging 18F-FDG PET/CT was evaluated if available within 2 wk before or after 68Ga-SSO-120 PET if morphologic differences in CT images were absent. 68Ga-SSO-120- or 18F-FDG-positive lesions were reported in 7 anatomic regions (primary tumor, thoracic lymph node metastases, and distant metastases including pleural, contralateral pulmonary, liver, bone, and other) according to the TNM classification for lung cancer (eighth edition). Consensus TNM staging (derived from CT, endobronchial ultrasound-guided transbronchial needle aspiration, PET, and brain MRI) by a clinical tumor board served as the reference standard. Results: Thirty-one patients were included, 12 with limited and 19 with extensive disease according to the Veterans Administration Lung Study Group classification. 68Ga-SSO-120-positive tumor was detected in all patients (100%) and in 90 of the 217 evaluated regions (41.5%). Thirteen patients (42.0%) had intense average 68Ga-SSO-120 uptake (region-based mean SUVmax ≥ 10); 28 patients (90.3%) had average 68Ga-SSO-120 uptake greater than liver uptake (region-based mean peak tumor-to-liver ratio > 1). In 25 patients with evaluable 18F-FDG PET, primary tumor, thoracic lymph node metastases, and distant metastases were detected in 100%, 92%, and 64%, respectively, of all investigated patients by 68Ga-SSO-120 and in 100%, 92%, and 56%, respectively, by 18F-FDG PET. 68Ga-SSO-120 PET detected additional contralateral lymph node, liver, and brain metastases in 1, 1, and 2 patients, respectively (no histopathology available), and 18F-FDG PET detected additional contralateral lymph node metastases in 3 patients (1 confirmed, 1 systematic endobronchial ultrasound-guided transbronchial needle aspiration-negative, and 1 without available histopathology). None of these differences altered Veterans Administration Lung Study Group staging. The region-based monotonic correlation between 68Ga-SSO-120 and 18F-FDG uptake was low (Spearman ρ = 0.26-0.33). Conclusion: 68Ga-SSO-120 PET offers high diagnostic precision with comparable detection rates and additional complementary information to the gold standard, 18F-FDG PET. Consistent uptake in most patients warrants exploration of SSTR2-directed radionuclide therapy.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Patrick Sandach
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Miriam Sraieb
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marcel Wiesweg
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Filiz Oezkan
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Servet Bölükbas
- Department of Thoracic Surgery and Thoracic Endoscopy, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Michael Nader
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Johannes Wienker
- Department of Pulmonary Medicine, Section of Interventional Pulmonology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Thoracic Oncology, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Jreige M, Darçot E, Lovis A, Simons J, Nicod-Lalonde M, Schaefer N, Buela F, Long O, Beigelman-Aubry C, Prior JO. Lung CT stabilization with high-frequency non-invasive ventilation (HF-NIV) and breath-hold (BH) in lung nodule assessment by PET/CT. Eur J Hybrid Imaging 2023; 7:16. [PMID: 37661217 PMCID: PMC10475447 DOI: 10.1186/s41824-023-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
PURPOSE To evaluate the effect of lung stabilization using high-frequency non-invasive ventilation (HF-NIV) and breath-hold (BH) techniques on lung nodule detection and texture assessment in PET/CT compared to a free-breathing (FB) standard lung CT acquisition in PET/CT. MATERIALS AND METHODS Six patients aged 65 ± 7 years, addressed for initial assessment of at least one suspicious lung nodule with 18F-FDG PET/CT, underwent three consecutive lung PET/CT acquisitions with FB, HF-NIV and BH. Lung nodules were assessed on all three CT acquisitions of the PET/CT and characterized for any size, volume and solid/sub-solid nature. RESULTS BH detected a significantly higher number of nodules (n = 422) compared to HF-NIV (n = 368) and FB (n = 191) (p < 0.001). The mean nodule size (mm) was 2.4 ± 2.1, 2.6 ± 1.9 and 3.2 ± 2.4 in BH, HF-NIV and FB, respectively, for long axis and 1.5 ± 1.3, 1.6 ± 1.2 and 2.1 ± 1.7 in BH, HF-NIV and FB, respectively, for short axis. Long- and short-axis diameters were significantly different between BH and FB (p < 0.001) and between HF-NIV and FB (p < 0.001 and p = 0.008), but not between BH and HF-NIV. A trend for higher volume was shown in FB compared to BH (p = 0.055) and HF-NIV (p = 0.068) without significant difference between BH and HF-NIV (p = 1). We found a significant difference in detectability of sub-solid nodules between the three acquisitions, with BH showing a higher number of sub-solid nodules (n = 128) compared to HF-NIV (n = 72) and FB (n = 44) (p = 0.002). CONCLUSION We observed a higher detection rate of pulmonary nodules on CT under BH or HF-NIV conditions applied to PET/CT than with FB. BH and HF-NIV demonstrated comparable texture assessment and performed better than FB in assessing size and volume. BH showed a better performance for detecting sub-solid nodules compared to HF-NIV and FB. The addition of BH or HF-NIV to PET/CT can help improve the detection and texture characterization of lung nodules by CT, therefore improving the accuracy of oncological lung disease assessment. The ease of use of BH and its added value should prompt its use in routine practice.
Collapse
Affiliation(s)
- Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Emeline Darçot
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Lovis
- Department of Pulmonology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Simons
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Nicod-Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Flore Buela
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Long
- Department of Physiotherapy, Lausanne University Hospital, Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Dumoulin DW, Aarts MJ, De Ruysscher D, Aerts JGJV, Dingemans AMC. Trends in the epidemiology of small-cell lung cancer: a Dutch nationwide population-based study over 1989-2020. Eur J Cancer 2023; 191:112985. [PMID: 37524025 DOI: 10.1016/j.ejca.2023.112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION This study describes the evolving characteristics of patients with small-cell lung cancer (SCLC) from 1989 to 2020 in the Netherlands to analyse how the population of patients with SCLC has changed in the last decades, hypothesising that this might explain the little progress made in SCLC. METHODS Patients with SCLC diagnosed from 1989 to 2020 were selected from the Dutch cancer registry. Incidence, patient and disease characteristics, treatments, and overall survival (OS) were analysed. Joinpoint analyses were used to test annual percentage changes for statistical significance. RESULTS A total of 52,527 patients were diagnosed with SCLC. The absolute numbers of patients with SCLC remained equal over the years; however, the incidence rates decreased from 15.01 to 8.93 per 100,000 person-years. The proportion of women increased from 22% to 50%, and those aged ≥75 years increased from 20% to 25%. The latter coincided with a higher proportion receiving only the best supportive care (BSC) over the years (18-24%). The use of surgery in stage I increased from 2% to 37%. The proportion of patients diagnosed with stage IV increased from 46% to 70% due to better staging. The OS improved for all stages, with a 2-year OS rate for stage IV doubling from 3% to 6%. CONCLUSION The incidence of SCLC has significantly decreased over the last 30 years, with an increasing proportion of elderly and women. The male-female ratio became similar, and the OS improved. As a consequence of more elderly and probably more vulnerable patients, more patients received only the BSC.
Collapse
Affiliation(s)
- Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
| | - Mieke J Aarts
- Netherlands Comprehensive Cancer Organisation (IKNL), Department of Research and Development, Utrecht, the Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Tas F, Ozturk A, Erturk K. Primary tumor SUV max and ratio of SUV max to primary tumor size on pretreatment 18F-FDG-PET/CT scan in small cell lung cancer : Which is superior for the prognosis? Wien Klin Wochenschr 2023; 135:478-487. [PMID: 36882606 DOI: 10.1007/s00508-023-02160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/04/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND The prognostic impact of tumor SUVmax (t-SUVmax) in small cell lung cancer (SCLC) has been questioned with controversial results, and the significance of the ratio of tumor SUVmax to primary tumor size (SUVmax/t-size) in SCLC has yet to be clarified as well. In this study, a retrospective analysis was carried out to figure out the prognostic and predictive powers of pretreatment primary t‑SUVmax and t‑SUVmax/t-size ratio in patients with SCLC. METHODS A total of 349 SCLC patients who underwent pretreatment staging with PET/CT scan were enrolled in the study and analyzed retrospectively. RESULTS In limited disease SCLC (LD-SCLC), tumor size was significantly associated with both t‑SUVmax (p = 0.02) and t‑SUVmax/t-size (p = 0.0001). Furthermore, performance status, tumor size (p = 0.001), and liver metastasis were significantly associated with t‑SUVmax in extended disease SCLC (ED-SCLC). Moreover, tumor size (p = 0.0001), performance status, cigarette smoking history, and pulmonary/pleural metastasis were found to be correlated with t‑SUVmax/t-size. No associations were found between clinical stages and either t‑SUVmax or t‑SUVmax/t-size (p = 0.9 for both), and t‑SUVmax and t‑SUVmax/t-size values were found to have similar survival rates in both LD-SCLC and ED-SCLC patients. In univariate and multivariate analyses, both t‑SUVmax and t‑SUVmax/t-size were found not to be associated with overall survival (p > 0.05) CONCLUSION: This study does not advocate the use of either t‑SUVmax or t‑SUVmax/t-size on pretreatment 18F‑FDG-PET/CT scan as prognostic and predictive tools for both LD-SCLC and ED-SCLC patients. Likewise, we did not find that t‑SUVmax/t-size was superior to t‑SUVmax in that respect.
Collapse
Affiliation(s)
- Faruk Tas
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey.
- Institute of Oncology, Istanbul University, 34390, Istanbul, Capa, Turkey.
| | - Akın Ozturk
- Department of Medical Oncology outpatient clinic, Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Kayhan Erturk
- Department of Medical Oncology, Koc University, Istanbul, Turkey
| |
Collapse
|
9
|
Melosky BL, Leighl NB, Dawe D, Blais N, Wheatley-Price PF, Chu QSC, Juergens RA, Ellis PM, Sun A, Schellenberg D, Ionescu DN, Cheema PK. Canadian Consensus Recommendations on the Management of Extensive-Stage Small-Cell Lung Cancer. Curr Oncol 2023; 30:6289-6315. [PMID: 37504325 PMCID: PMC10378571 DOI: 10.3390/curroncol30070465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive, neuroendocrine tumour with high relapse rates, and significant morbidity and mortality. Apart from advances in radiation therapy, progress in the systemic treatment of SCLC had been stagnant for over three decades despite multiple attempts to develop alternative therapeutic options that could improve responses and survival. Recent promising developments in first-line and subsequent therapeutic approaches prompted a Canadian Expert Panel to convene to review evidence, discuss practice patterns, and reach a consensus on the treatment of extensive-stage SCLC (ES-SCLC). The literature search included guidelines, systematic reviews, and randomized controlled trials. Regular meetings were held from September 2022 to March 2023 to discuss the available evidence to propose and agree upon specific recommendations. The panel addressed biomarkers and histological features that distinguish SCLC from non-SCLC and other neuroendocrine tumours. Evidence for initial and subsequent systemic therapies was reviewed with consideration for patient performance status, comorbidities, and the involvement and function of other organs. The resulting consensus recommendations herein will help clarify evidence-based management of ES-SCLC in routine practice, help clinician decision-making, and facilitate the best patient outcomes.
Collapse
Affiliation(s)
- Barbara L. Melosky
- Department of Medical Oncology, BC Cancer-Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| | - Natasha B. Leighl
- Department of Medicine, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - David Dawe
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Department of Medicine, Centre Hospitalier de l’Université de Montréal, University of Montreal, Montreal, QC H2X 3E4, Canada;
| | - Paul F. Wheatley-Price
- Department of Medicine, The Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Quincy S.-C. Chu
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Rosalyn A. Juergens
- Department of Medical Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Peter M. Ellis
- Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Alexander Sun
- Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, BC Cancer—Surrey Centre, 13750 96 Avenue, Surrey, BC V3V 1Z2, Canada;
| | - Diana N. Ionescu
- Department of Pathology, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Parneet K. Cheema
- Division of Medical Oncology, William Osler Health System, University of Toronto, Brampton, ON L6R 3J7, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Dumoulin DW, Bironzo P, Passiglia F, Scagliotti GV, Aerts JGJV. Rare thoracic cancers: a comprehensive overview of diagnosis and management of small cell lung cancer, malignant pleural mesothelioma and thymic epithelial tumours. Eur Respir Rev 2023; 32:220174. [PMID: 36754434 PMCID: PMC9910338 DOI: 10.1183/16000617.0174-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2022] [Indexed: 02/10/2023] Open
Abstract
Despite the progress in outcomes seen with immunotherapy in various malignancies, including nonsmall cell lung cancer, the benefits are less in small cell lung cancer, malignant pleural mesothelioma and thymic epithelial tumours. New effective treatment options are needed, guided via more in-depth insights into the pathophysiology of these rare malignancies. This review comprehensively presents an overview of the clinical presentation, diagnostic tools, staging systems, pathophysiology and treatment options for these rare thoracic cancers. In addition, opportunities for further improvement of therapies are discussed.
Collapse
Affiliation(s)
- Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paolo Bironzo
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Park H, Tseng SC, Sholl LM, Hatabu H, Awad MM, Nishino M. Molecular Characterization and Therapeutic Approaches to Small Cell Lung Cancer: Imaging Implications. Radiology 2022; 305:512-525. [PMID: 36283111 PMCID: PMC9713457 DOI: 10.1148/radiol.220585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/16/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy with exceptionally poor prognosis, comprising approximately 15% of lung cancers. Emerging knowledge of the molecular and genomic landscape of SCLC and recent successful clinical applications of new systemic agents have allowed for precision oncology treatment approaches. Imaging is essential for the diagnosis, staging, and treatment monitoring of patients with SCLC. The role of imaging is increasing with the approval of new treatment agents, including immune checkpoint inhibitors, which lead to novel imaging manifestations of response and toxicities. The purpose of this state-of-the-art review is to provide the reader with the latest information about SCLC, focusing on the subtyping of this malignancy (molecular characterization) and the emerging systemic therapeutic approaches and their implications for imaging. The review will also discuss the future directions of SCLC imaging, radiomics and machine learning.
Collapse
Affiliation(s)
- Hyesun Park
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | | | - Lynette M. Sholl
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Hiroto Hatabu
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Mark M. Awad
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Mizuki Nishino
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| |
Collapse
|
12
|
Hu Y, Sun J, Li D, Li Y, Li T, Hu Y. The combined role of PET/CT metabolic parameters and inflammatory markers in detecting extensive disease in small cell lung cancer. Front Oncol 2022; 12:960536. [PMID: 36185188 PMCID: PMC9515531 DOI: 10.3389/fonc.2022.960536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The combined role of inflammatory markers [including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), and systemic immune-inflammation index (SII)] and PET/CT metabolic parameters [including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and TLG (total lesion glycolysis)] at baseline in evaluating the binary stage [extensive-stage disease (ED) and limited-stage disease (LD)] of small cell lung cancer (SCLC) is unclear. In this study, we verified that high metabolic parameters and inflammatory markers were related to the binary stage of SCLC patients, respectively (p < 0.05). High inflammatory markers were also associated with high MTV and TLG in patients with SCLC (p < 0.005). Moreover, the incidences of co-high metabolic parameters and inflammatory markers were higher in ED-SCLC (p < 0.05) than those in LD-SCLC. Univariate logistic regression analysis demonstrated that Co-high MTV/NLR, Co-high MTV/MLR, Co-high MTV/SII, Co-high TLG/NLR, Co-high TLG/MLR, and Co-high TLG/SII were significantly related to the binary stage of SCLC patients (p = 0.00). However, only Co-high MTV/MLR was identified as an independent predictor for ED-SCLC (odds ratio: 8.67, 95% confidence interval CI: 3.51–21.42, p = 0.000). Our results suggest that co-high metabolic parameters and inflammatory markers could be of help for predicting ED-SCLC at baseline. Together, these preliminary findings may provide new ideas for more accurate staging of SCLC.
Collapse
Affiliation(s)
- Yao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jin Sun,
| | - Danming Li
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangyang Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiannv Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Novruzov E, Mori Y, Antke C, Dabir M, Schmitt D, Kratochwil C, Koerber SA, Haberkorn U, Giesel FL. A Role of Non-FDG Tracers in Lung Cancer? Semin Nucl Med 2022; 52:720-733. [PMID: 35803770 DOI: 10.1053/j.semnuclmed.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Since the introduction of PET/CT hybrid imaging about two decades ago the landscape of oncological imaging has fundamentally changed, opening a new era of molecular imaging with emphasis on functional characterization of biological processes such as metabolism, cellular proliferation, hypoxia, apoptosis, angiogenesis and immune response. The most commonly assessed functional hallmark of cancer is the increased metabolism in tumor cells due to well-known Warburg effect, because of which FDG has been the most employed radiotracer, the so-called pan-cancer agent, in oncological imaging. However, several limitations such as low specificity and low sensitivity for several histopathological forms of lung cancer as well as high background uptake in the normal tissue of FDG imaging lead to numerous serious pitfalls. This restricts its utilization and diagnostic value in lung cancer imaging, even though this is currently considered to be the method of choice in pulmonary cancer imaging. Accurate initial tumor staging and therapy response monitoring with respect to the TNM criteria plays a crucial role in therapy planning and management in patients with lung cancer. To this end, many efforts have been made for decades to develop novel PET radiopharmaceuticals with innovative approaches that go beyond the assessment of increased glycolytic activity alone. Radiopharmaceuticals targeting DNA synthesis, amino acid metabolism, angiogenesis, or hypoxia have been extensively studied, leading to the emergence of indications for specific clinical questions or as a complementary imaging tool alongside existing conventional or FDG imaging. Nevertheless, despite some initial encouraging results, these tracers couldn't gain a widespread use and acceptance in clinical routine. However, given its mechanism of action and some initial pilot studies regarding lung cancer imaging, FAPI has emerged as a very promising alternative tool that could provide superior or comparable diagnostic performance to FDG imaging in lung cancer entities. Thus, in this review article, we summarized the current PET radiopharmaceuticals, different imaging approaches and discussed the potential benefits and clinical applications of these agents in lung cancer imaging.
Collapse
Affiliation(s)
- Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Mardjan Dabir
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Dominik Schmitt
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
14
|
Abstract
ABSTRACT Lung cancer is the leading cause of cancer-related deaths worldwide. Many of the presenting symptoms of lung cancer are indistinguishable from symptoms of other problems, which often leads to delays of a lung cancer diagnosis. Early identification can lead to a timely diagnosis and improved quality of life.
Collapse
Affiliation(s)
- Victoria Sherry
- Victoria Sherry is an oncology NP for thoracic malignancies at the Abramson Cancer Center, Hospital of the University of Pennsylvania, and Faculty, University of Pennsylvania School of Nursing, both in Philadelphia, Pa
| |
Collapse
|
15
|
Kandathil A, Subramaniam RM. FDG PET/CT for Primary Staging of Lung Cancer and Mesothelioma. Semin Nucl Med 2022; 52:650-661. [PMID: 35738910 DOI: 10.1053/j.semnuclmed.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Accurate staging at initial diagnosis determines appropriate treatment and is the most important predictor of survival. Since 2018, the 8th edition of the TNM staging system has been used to stage lung cancer based on local tumor extent (T), nodal involvement (N), and metastases (M). 18 F fluorodeoxyglucose (FDG) PET/CT, which combines functional and anatomic imaging, is the standard of care and an integral part of clinical staging of patients with lung cancer. Malignant pleural mesothelioma (MPM), the most common primary malignant pleural tumor affecting the pleura is staged with 8th edition of TNM staging for MPM. 18 F FDG PET/CT is indicated in select patients who are surgical candidates to identify locally advanced tumor, nodal metastases, or extrathoracic metastases, which may preclude surgery.
Collapse
Affiliation(s)
- Asha Kandathil
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rathan M Subramaniam
- Department of Radiology, Duke University, Durham, NC; Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Correlation of somatostatin receptor PET/CT imaging features and immunohistochemistry in neuroendocrine tumors of the lung: a retrospective observational study. Eur J Nucl Med Mol Imaging 2022; 49:4182-4193. [PMID: 35674739 DOI: 10.1007/s00259-022-05848-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To correlate somatostatin receptor (SSTR) and proliferative activity profile (SSTR2, SSTR5, Ki-67) at immunohistochemistry (IHC) with SSTR-PET/CT imaging features in a retrospective series of lung neuroendocrine tumors (NET). Proliferative activity by Ki-67 and 18F-FDG-PET/CT parameters (when available) were also correlated. METHODS Among 551 patients who underwent SSTR-PET/CT with 68Ga-DOTA-somatostatin analogs (SSA) between July 2011 and March 2020 for lung neuroendocrine neoplasms, 32 patients with a confirmed diagnosis of NET were included. For 14 of them, 18F-FDG-PET/CT was available. PET/CT images were reviewed by qualitative and semi-quantitative analyses. Immunohistochemistry for SSTR2, SSTR5, and Ki-67 was assessed. Inferential analysis was performed including kappa statistics and Spearman's rank correlation test. RESULTS Definitive diagnosis consisted of 26 typical carcinoids-G1 and six atypical carcinoids-G2. Positive SSTR2-IHC was found in 62.5% of samples while SSTR5-IHC positivity was 19.4%. A correlation between SSTR2-IHC and SSTR-PET/CT was found in 24/32 cases (75.0%, p = 0.003): 20 were concordantly positive, 4 concordantly negative. For positive IHC, 100% concordance with SSTR-PET/CT (both positive) was observed, while for negative IHC concordance (both negative) was 33.3%. In 8 cases, IHC was negative while SSTR-PET/CT was positive, even though with low-grade uptake in all but one. A significant correlation between SUVmax values at SSTR-PET/CT and the SSTR2-IHC scores was found, with low SUVmax values corresponding to negative IHC and higher SUVmax values to positive IHC (p = 0.002). CONCLUSION This retrospective study showed an overall good agreement between SSTR2-IHC and tumor uptake at SSTR-PET/CT in lung NETs. SSTR-PET/CT SUVmax values can be used as a parameter of SSTR2 density. Within the limits imposed by the relatively small cohort, our data suggest that SSTR2-IHC may surrogate SSTR-PET/CT in selected lung NET patients for clinical decision making when SSTR-PET/CT is not available.
Collapse
|
17
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Freely available convolutional neural network-based quantification of PET/CT lesions is associated with survival in patients with lung cancer. EJNMMI Phys 2022; 9:6. [PMID: 35113252 PMCID: PMC8814082 DOI: 10.1186/s40658-022-00437-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background Metabolic positron emission tomography/computed tomography (PET/CT) parameters describing tumour activity contain valuable prognostic information, but to perform the measurements manually leads to both intra- and inter-reader variability and is too time-consuming in clinical practice. The use of modern artificial intelligence-based methods offers new possibilities for automated and objective image analysis of PET/CT data.
Purpose We aimed to train a convolutional neural network (CNN) to segment and quantify tumour burden in [18F]-fluorodeoxyglucose (FDG) PET/CT images and to evaluate the association between CNN-based measurements and overall survival (OS) in patients with lung cancer. A secondary aim was to make the method available to other researchers. Methods A total of 320 consecutive patients referred for FDG PET/CT due to suspected lung cancer were retrospectively selected for this study. Two nuclear medicine specialists manually segmented abnormal FDG uptake in all of the PET/CT studies. One-third of the patients were assigned to a test group. Survival data were collected for this group. The CNN was trained to segment lung tumours and thoracic lymph nodes. Total lesion glycolysis (TLG) was calculated from the CNN-based and manual segmentations. Associations between TLG and OS were investigated using a univariate Cox proportional hazards regression model. Results The test group comprised 106 patients (median age, 76 years (IQR 61–79); n = 59 female). Both CNN-based TLG (hazard ratio 1.64, 95% confidence interval 1.21–2.21; p = 0.001) and manual TLG (hazard ratio 1.54, 95% confidence interval 1.14–2.07; p = 0.004) estimations were significantly associated with OS. Conclusion Fully automated CNN-based TLG measurements of PET/CT data showed were significantly associated with OS in patients with lung cancer. This type of measurement may be of value for the management of future patients with lung cancer. The CNN is publicly available for research purposes.
Collapse
|
19
|
PET imaging of lung and pleural cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Martin SS, Muscogiuri E, Burchett PF, van Assen M, Tessarin G, Vogl TJ, Schoepf UJ, De Cecco CN. Tumorous tissue characterization using integrated 18F-FDG PET/dual-energy CT in lung cancer: Combining iodine enhancement and glycolytic activity. Eur J Radiol 2021; 150:110116. [PMID: 34996651 DOI: 10.1016/j.ejrad.2021.110116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
Abstract
Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) has become the method of choice for tumor staging in lung cancer patients with improved diagnostic accuracy for the evaluation of lymph node involvement and distant metastasis. Due to its spectral capabilities, dual-energy CT (DECT) employs a material decomposition algorithm enabling precise quantification of iodine concentrations in distinct tissues. This technique enhances the characterization of tumor blood supply and has demonstrated promising results for the assessment of therapy response in patients with lung cancer. Several studies have demonstrated that DECT provides additional value to the PET-based evaluation of glycolytic activity, especially for the evaluation of therapy response and follow-up of patients with lung cancer. The combination of PET and DECT in a single scanner system enables the simultaneous assessment of glycolytic activity and iodine enhancement, offering further insight to the characterization of tumorous tissues. Recently a new approach of a novel integrated PET/DECT was investigated in a pilot study on patients with non-small cell lung cancer (NSCLC). The study showed a moderate correlation between PET-based standard uptake values (SUV) and DECT-based iodine densities in the evaluation of lung tumorous tissue but with limited assessment of lymph nodes. The following review on tumorous tissue characterization using PET and DECT imaging describes the strengths and limitations of this novel technique.
Collapse
Affiliation(s)
- Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Emanuele Muscogiuri
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA; Institute of Radiology, University of Rome "Sapienza", Rome, Italy
| | - Philip F Burchett
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Giovanni Tessarin
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA; Department of Medicine-DIMED, Institute of Radiology, University of Padova, Italy
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Lee SJ, Ha S, Pahk K, Choi YY, Choi JY, Kim S, Kwon HW. Changes in treatment intent and target definition for preoperative radiotherapy after 18F-Fluorodeoxyglucose positron emission tomography in rectal cancer: A Meta-analysis. Eur J Radiol 2021; 145:110061. [PMID: 34839213 DOI: 10.1016/j.ejrad.2021.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the impact of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on changes in treatment plan and target definition for preoperative radiotherapy in patients with rectal cancer. METHODS Embase, PubMed, and Cochrane Library were searched up to November 2020 for all studies investigating the role of preoperative FDG PET in patients who underwent neoadjuvant radiotherapy before curative-intent surgery. The proportion of patients whose treatment plan (curative vs. palliative intent) or target definition was changed after FDG PET was analyzed. A random-effects model was used for pooled analysis. The change in target definition was compared between conventional radiological imaging-based target volume [gross tumor volume (GTV) or planning target volume (PTV)] and PET-based target volume (GTV or PTV) using the standardized mean difference (SMD) and 95% confidence interval (CI). RESULTS A total of 336 patients from twelve studies were included. In eight studies, PET changed either the treatment intent or target definition in 24.8% of patients (95% CI 15.1% to 37.9%, I2 = 69%). In ten studies, the PET-based GTV was lower than the conventional imaging-based target volume (SMD -7.0, 95% CI -1.39 to -0.01). However, there was no significant difference between conventional imaging-based and PET-based PTV (SMD -0.07, 95% CI -0.75 to 0.62). In six studies evaluating the initial staging based on PET, the initial staging (nodal or metastasis status) was changed in 53 of 229 patients (23.1%). Newly detected or additional distant metastases were identified in 22 patients (9.6%) after FDG PET. CONCLUSION The use of FDG PET influences radiotherapy planning in a fourth of patients with rectal cancer. FDG PET can provide additive information for accurate tumor delineation, although PET-based PTV did not significantly change. These findings suggest that FDG PET may be beneficial to patients with rectal cancer before establishing a radiotherapy plan.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Seunggyun Ha
- Department of Nuclear Medicine, Catholic Medical Center, Seoul, South Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yun Young Choi
- Department of Nuclear Medicine, Hanyang University Medical Center, Seoul, South Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
23
|
Treglia G, Sadeghi R, Giovinazzo F, Galiandro F, Annunziata S, Muoio B, Kroiss AS. PET with Different Radiopharmaceuticals in Neuroendocrine Neoplasms: An Umbrella Review of Published Meta-Analyses. Cancers (Basel) 2021; 13:cancers13205172. [PMID: 34680321 PMCID: PMC8533943 DOI: 10.3390/cancers13205172] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Functional imaging methods and, in particular, positron emission tomography (PET) using several radiopharmaceuticals may play a pivotal role in patients with neuroendocrine neoplasms including neuroendocrine tumors (NETs) located in different sites, paraganglioma (PGL) and neuroblastoma (NB), recurrent medullary thyroid carcinoma (rMTC) and aggressive neuroendocrine neoplasms. Several radiopharmaceuticals can be used in this setting such as Gallium-68 somatostatin analogues (68Ga-SSA), Fluorine-18 fluorodihydroxyphenylalanine (18F-FDOPA), Gallium-68 exendin-4 (68Ga-exendin-4), Fluorine-18 fluorodeoxyglucose (18F-FDG). This umbrella review provides an evidence-based summary about meta-analyses on diagnostic performance, prognostic value, clinical impact and safety of PET with different radiopharmaceuticals in patients with neuroendocrine neoplasms. Overall, evidence-based data support the use of PET with different radiopharmaceuticals in patients with neuroendocrine neoplasms but with specific indications for each radiopharmaceutical. Abstract Background: Several meta-analyses have reported quantitative data about the diagnostic performance, the prognostic value, the impact on management and the safety of positron emission tomography (PET) including related hybrid modalities (PET/CT or PET/MRI) using different radiopharmaceuticals in patients with neuroendocrine neoplasms. We performed an umbrella review of published meta-analyses to provide an evidence-based summary. Methods: A comprehensive literature search of meta-analyses listed in PubMed/MEDLINE and Cochrane Library databases was carried out (last search date: 30 June 2021). Results: Thirty-four published meta-analyses were selected and summarized. About the diagnostic performance: 68Ga-SSA PET yields high diagnostic performance in patients with NETs and PGL; 18F-FDOPA PET yields good diagnostic performance in patients with intestinal NETs, PGL, NB, being the best available PET method in detecting rMTC; 68Ga-exendin-4 PET has good diagnostic accuracy in detecting insulinomas; 18F-FDG PET has good diagnostic performance in detecting aggressive neuroendocrine neoplasms. About the prognostic value: 68Ga-SSA PET has a recognized prognostic value in well-differentiated NETs, whereas 18F-FDG PET has a recognized prognostic value in aggressive neuroendocrine neoplasms. A significant clinical impact of 68Ga-SSA PET and related hybrid modalities in patients with NETs was demonstrated. There are no major toxicities or safety issues related to the use of PET radiopharmaceuticals in patients with neuroendocrine neoplasms. Conclusions: Evidence-based data support the use of PET with different radiopharmaceuticals in patients with neuroendocrine neoplasms with specific indications for each radiopharmaceutical.
Collapse
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-(91)-8118919
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 9919991766, Iran;
| | - Francesco Giovinazzo
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.G.); (F.G.)
| | - Federica Galiandro
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.G.); (F.G.)
| | - Salvatore Annunziata
- UOC Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Barbara Muoio
- Department of Medicine and Oncology, Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
24
|
Chai Y, Ma Y, Feng W, Lu H, Jin L. Effect of surgery on survival in patients with stage III N2 small cell lung cancer: propensity score matching analysis and nomogram development and validation. World J Surg Oncol 2021; 19:258. [PMID: 34461929 PMCID: PMC8404296 DOI: 10.1186/s12957-021-02364-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Background The standard treatment of stage III N2 small cell lung cancer (SCLC) is concurrent chemoradiation, and surgery is not recommended. This study was aimed to evaluate whether surgery has survival benefits in patients with stage III N2 SCLC and investigate the factors influencing survival of surgery. Methods Patients diagnosed with stage T1-4N2M0 SCLC from 2004 to 2015 were selected from the Surveillance Epidemiology End Results database. Propensity score matching (PSM) was used to balance confounders between patients who underwent surgery and those treated with radiation and/or chemotherapy. We compared overall survival (OS) of the two groups using Kaplan-Meier curves and a Cox proportional hazard model. We also identified prognostic factors in patients with surgical resection, and a nomogram was developed and validated for predicting postoperative OS. Results −A total of 5576 patients were included in the analysis; of these, 211 patients underwent surgery. PSM balanced the differences between the two groups. The median OS was longer in the surgery group than in the non-surgery group (20 vs. 15 months; p = 0.0024). Surgery was an independent prognostic factor for longer OS in the multivariate Cox regression analysis, and subgroup analysis revealed a higher survival rate in T1 stage patients treated with surgery (hazard ratio = 0.565, 95% confidence interval: 0.401–0.798; p = 0.001). In patients who underwent surgery, four prognostic factors, including age, T stage, number of positive lymph nodes, and radiation, were selected into nomogram development for predicting postoperative OS. C-index, decision curve analyses, integrated discrimination improvement, and time-dependent receiver operating characteristics showed better performance in nomogram than in the tumor-node-metastasis staging system. Calibration plots demonstrated good consistency between nomogram predicted survival and actual observed survival. The patients were stratified into three different risk groups by prognostic scores and Kaplan-Meier curves showed significant difference between these groups. Conclusions These results indicate that surgery can prolong survival in patients with operable stage III N2 SCLC, particularly those with T1 disease. A nomogram that includes age, T stage, number of positive lymph nodes, and radiation can be used to predict their long-term postoperative survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02364-6.
Collapse
Affiliation(s)
- Yanfei Chai
- Departments of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha, 410013, China
| | - Yuchao Ma
- Departments of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha, 410013, China
| | - Wei Feng
- Departments of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha, 410013, China
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha, 410013, China.
| | - Longyu Jin
- Departments of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha, 410013, China.
| |
Collapse
|
25
|
Quartuccio N, Salem A, Laudicella R, Spataro A, Chiaravalloti A, Caobelli F, Cistaro A, Alongi P, Evangelista L. The role of 18F-Fluorodeoxyglucose PET/CT in restaging patients with small cell lung cancer: a systematic review. Nucl Med Commun 2021; 42:839-845. [PMID: 33741854 DOI: 10.1097/mnm.0000000000001407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM 18F-Fluorodeoxyglucose (FDG) PET imaging may play an important role in the restaging of patients with small-cell lung cancer (SCLC),, nevertheless, a systematic review of literature was still missing in this setting. The aim of this review was to summarize the evidence on literature regarding the utility of 18F-FDG PET imaging in restaging patients with SCLC. METHODS A literature search was performed to retrieve original studies using 18F-FDG PET or 18F-FDG PET/computed tomography (CT) in a minimum of 10 patients with SCLC at restaging. RESULTS The selected literature (17 studies) was discussed in four sections: detection rate, impact on management, prediction of prognosis and evaluation of the response to therapy. According to the literature, PET imaging may result in discordance with conventional imaging, mainly contrast-enhanced CT (ceCT), and detect additional lesions in a certain proportion of cases, leading to upstaging or downstaging. A variable level of disagreement between PET and conventional imaging has been reported also in the evaluation of response to therapy. A positive PET study is associated with shorter survival, especially in the presence of distant metastases. According to some studies, semiquantitative parameters are also inversely associated with overall survival and progression-free survival. Although the retrieved articles proved the utility of 18F-FDG PET imaging in each clinical setting, literature is still limited. CONCLUSIONS This review encourages the use of 18F-FDG PET imaging, especially in conjunction with ceCT in recurrent SCLC patients. Further level I evidence is needed to further assess the diagnostic and prognostic capability of 18F-FDG PET/ceCT findings in SCLC.
Collapse
Affiliation(s)
- Natale Quartuccio
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, Palermo, Italy
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester
- Clinical Oncology Department, Christie NHS Foundation Trust, Manchester, UK
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina
| | - Alessandro Spataro
- Clinical Oncology Department, Christie NHS Foundation Trust, Manchester, UK
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Rome
- Nuclear Medicine Section, IRCCS Neuromed, Pozzilli, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben, Basel, Switzerland
| | | | | | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
26
|
Dingemans AMC, Früh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks LE, Lantuejoul S, Peters S, Reguart N, Rudin CM, De Ruysscher D, Van Schil PE, Vansteenkiste J, Reck M. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up ☆. Ann Oncol 2021; 32:839-853. [PMID: 33864941 PMCID: PMC9464246 DOI: 10.1016/j.annonc.2021.03.207] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- A.-M. C. Dingemans
- Department of Pulmonology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Respiratory Medicine, Rotterdam
- Department of Pulmonology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M. Früh
- Department of Oncology and Haematology, Kantonsspital St. Gallen, St. Gallen
- Department of Medical Oncology, University of Bern, Bern, Switzerland
| | - A. Ardizzoni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - B. Besse
- Gustave Roussy, Villejuif
- Paris-Saclay University, Orsay, France
| | - C. Faivre-Finn
- Division of Cancer Sciences, University of Manchester & The Christie, NHS Foundation Trust, Manchester, UK
| | - L. E. Hendriks
- Department of Pulmonology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S. Lantuejoul
- Department of Biopathology, Centre Léon Bérard, Grenoble Alpes University, Lyon, France
| | - S. Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - N. Reguart
- Department of Medical Oncology, Hospital Clínic and Translational Genomics and Targeted Therapeutics in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - C. M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D. De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P. E. Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - J. Vansteenkiste
- Department of Respiratory Oncology, University Hospital KU Leuven, Leuven, Belgium
| | - M. Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, Lung Clinic, Grosshansdorf, Germany
| | | |
Collapse
|
27
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|
28
|
Couñago F, de la Pinta C, Gonzalo S, Fernández C, Almendros P, Calvo P, Taboada B, Gómez-Caamaño A, Guerra JLL, Chust M, González Ferreira JA, Álvarez González A, Casas F. GOECP/SEOR radiotherapy guidelines for small-cell lung cancer. World J Clin Oncol 2021; 12:115-143. [PMID: 33767969 PMCID: PMC7968106 DOI: 10.5306/wjco.v12.i3.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) accounts for approximately 20% of all lung cancers. The main treatment is chemotherapy (Ch). However, the addition of radiotherapy significantly improves overall survival (OS) in patients with non-metastatic SCLC and in those with metastatic SCLC who respond to Ch. Prophylactic cranial irradiation reduces the risk of brain metastases and improves OS in both metastatic and non-metastatic patients. The 5-year OS rate in patients with limited-stage disease (non-metastatic) is slightly higher than 30%, but less than 5% in patients with extensive-stage disease (metastatic). The present clinical guidelines were developed by Spanish radiation oncologists on behalf of the Oncologic Group for the Study of Lung Cancer/Spanish Society of Radiation Oncology to provide a current review of the diagnosis, planning, and treatment of SCLC. These guidelines emphasise treatment fields, radiation techniques, fractionation, concomitant treatment, and the optimal timing of Ch and radiotherapy. Finally, we discuss the main indications for reirradiation in local recurrence.
Collapse
Affiliation(s)
- Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Hospital La Luz, Universidad Europea de Madrid, Madrid 28223, Madrid, Spain
| | - Carolina de la Pinta
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Castalia Fernández
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
| | - Piedad Almendros
- Department of Radiation Oncology, Hospital General Universitario, Valencia 46014, Spain
| | - Patricia Calvo
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Begoña Taboada
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - José Luis López Guerra
- Department of Radiation Oncology, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Marisa Chust
- Department of Radiation Oncology, Fundación Instituto Valenciano de Oncología, Valencia 46009, Spain
| | | | | | - Francesc Casas
- Department of Radiation Oncology, Thoracic Unit, Hospital Clinic, Barcelona 08036, Spain
| |
Collapse
|
29
|
Hirata K, Tamaki N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers (Basel) 2021; 13:cancers13040869. [PMID: 33669531 PMCID: PMC7922629 DOI: 10.3390/cancers13040869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary PET enables quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour metabolic activity. Quantitative assessment of FDG uptake can be applied for treatment monitoring. Numerous studies indicated biochemical change assessed by FDG-PET as a more sensitive marker than morphological change. Those with complete metabolic response after therapy may show better prognosis. Assessment of metabolic change may be performed using absolute FDG uptake or metabolic tumour volume. More recently, radiomics approaches have been applied to FDG PET. Texture analysis quantifies intratumoral heterogeneity in a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours. Abstract Positron emission tomography (PET) has unique characteristics for quantitative assessment of tumour biology in vivo. Accumulation of F-18 fluorodeoxyglucose (FDG) may reflect tumour characteristics based on its metabolic activity. Quantitative assessment of FDG uptake can often be applied for treatment monitoring after chemotherapy or chemoradiotherapy. Numerous studies indicated biochemical change assessed by FDG PET as a more sensitive marker than morphological change estimated by CT or MRI. In addition, those with complete metabolic response after therapy may show better disease-free survival and overall survival than those with other responses. Assessment of metabolic change may be performed using absolute FDG uptake in the tumour (standardized uptake value: SUV). In addition, volumetric parameters such as metabolic tumour volume (MTV) have been introduced for quantitative assessment of FDG uptake in tumour. More recently, radiomics approaches that focus on image-based precision medicine have been applied to FDG PET, as well as other radiological imaging. Among these, texture analysis extracts intratumoral heterogeneity on a voxel-by-voxel basis. Combined with various machine learning techniques, these new quantitative parameters hold a promise for assessing tissue characterization and predicting treatment effect, and could also be used for future prognosis of various tumours, although multicentre clinical trials are needed before application in clinical settings.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Nagara Tamaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence:
| |
Collapse
|
30
|
Zhang Q, Cui Q. Biodistribution of andrographolide to assess the interior-exterior relationship between the lung and intestine using microPET. Thorac Cancer 2020; 11:3365-3374. [PMID: 33017514 PMCID: PMC7606023 DOI: 10.1111/1759-7714.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/23/2023] Open
Abstract
Background One classic traditional Chinese medicine theory is that the “lung and intestine are exterior‐interiorly related”; however, this has not been confirmed experimentally. The aim of this study was to provide a biological basis for the theory by measuring the tissue distribution of andrographolide. Methods Acute pneumonia was induced in a mouse model by repeated stimulation with lipopolysaccharide. The distribution of andrographolide in mice was observed by positron emission tomography (PET) imaging with [18F]‐labeled andrographolide, and changes in the in vivo distribution before and after modeling were compared. Subsequently, the consistency of pathological changes in lung and intestine was confirmed by observation of pathological sections. Finally, the results were verified by cytokine detection. Results The value of organ uptake, pathological changes and inflammatory factor expression of the lung and intestine were consistent. The concentration of andrographolide in the lung and intestine increased significantly, and was confirmed by pathology and enzyme‐linked immunosorbent assays (ELISA). Conclusions Micro‐positron emission tomography (microPET) can be used to visually observe the distribution of medicinal ingredients in vivo, and [18F]‐andrographolide can be used as a tool to assess the interior‐exterior relationship between the lung and intestine.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|