1
|
Zhang XM, Min XR, Li D, Li B, Rui YX, Xie HX, Liu R, Zeng N. The protective effect and mechanism of piperazine ferulate in rats with 5/6 nephrectomy-caused chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5715-5729. [PMID: 38305866 DOI: 10.1007/s00210-024-02976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Chronic kidney disease (CKD) is a type of chronic disease in which multiple factors are responsible for the structural and functional disorders of the kidney. Piperazine ferulate (PF) has anti-platelet and anti-fibrotic effects, and its mechanism of action remains to be elucidated. This study aimed to investigate the protective effect of PF against CKD in rats and to determine its mechanism of action. Network pharmacology was used to predict potential PF action targets in the treatment of CKD and to further validate them. A rat model of CKD was established; blood was collected, etc., for the assessment of the renal function; renal pathologic damage was examined using hematoxylin and eosin (HE) staining and Masson staining; changes in the levels of TGF-β1 and α-SMA were determined with ELISA; EPOR, FN, and COL I expression were detected utilizing immunohistochemistry; and HIF-1α, HIF-2α, and EPO protein molecules were analyzed deploying western blotting. PF reduces Scr, BUN, and 24 h UP levels; decreases FN and COL I expression; and attenuates renal injury. Additionally, PF inhibited TGF-β1 and stimulated the production of HIF-1α and HIF-2α, which downregulated α-SMA and upregulated EPO. PF attenuated the progression of the CKD pathology, and the mechanism of its action is possibly associated with the promotion of HIF-1α/HIF-2α/EPO production and TGF-β1 reduction.
Collapse
Affiliation(s)
- Xiu-Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xin-Ran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Li
- Chengdu Hanpharm Pharmaceutical Co., Ltd., Pengzhou, 611930, Sichuan, China
| | - Yi-Xin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hong-Xiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang Distract, Chengdu City, 611137, Sichuan Province, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
2
|
Andrzejczyk K, Abou Kamar S, van Ommen AM, Canto ED, Petersen TB, Valstar G, Akkerhuis KM, Cramer MJ, Umans V, Rutten FH, Teske A, Boersma E, Menken R, van Dalen BM, Hofstra L, Verhaar M, Brugts J, Asselbergs F, den Ruijter H, Kardys I. Identifying plasma proteomic signatures from health to heart failure, across the ejection fraction spectrum. Sci Rep 2024; 14:14871. [PMID: 38937570 PMCID: PMC11211454 DOI: 10.1038/s41598-024-65667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Circulating proteins may provide insights into the varying biological mechanisms involved in heart failure (HF) with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). We aimed to identify specific proteomic patterns for HF, by comparing proteomic profiles across the ejection fraction spectrum. We investigated 4210 circulating proteins in 739 patients with normal (Stage A/Healthy) or elevated (Stage B) filling pressures, HFpEF, or ischemic HFrEF (iHFrEF). We found 2122 differentially expressed proteins between iHFrEF-Stage A/Healthy, 1462 between iHFrEF-HFpEF and 52 between HFpEF-Stage A/Healthy. Of these 52 proteins, 50 were also found in iHFrEF vs. Stage A/Healthy, leaving SLITRK6 and NELL2 expressed in lower levels only in HFpEF. Moreover, 108 proteins, linked to regulation of cell fate commitment, differed only between iHFrEF-HFpEF. Proteomics across the HF spectrum reveals overlap in differentially expressed proteins compared to stage A/Healthy. Multiple proteins are unique for distinguishing iHFrEF from HFpEF, supporting the capacity of proteomics to discern between these conditions.
Collapse
Affiliation(s)
- Karolina Andrzejczyk
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sabrina Abou Kamar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Anne-Mar van Ommen
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elisa Dal Canto
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Teun B Petersen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maarten Jan Cramer
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Victor Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Frans H Rutten
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arco Teske
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Roxana Menken
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Leonard Hofstra
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Marianne Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Brugts
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert Asselbergs
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Elbaset MA, Mohamed BMSA, Gad SA, Afifi SM, Esatbeyoglu T, Abdelrahman SS, Fayed HM. Erythropoietin mitigated thioacetamide-induced renal injury via JAK2/STAT5 and AMPK pathway. Sci Rep 2023; 13:14929. [PMID: 37697015 PMCID: PMC10495371 DOI: 10.1038/s41598-023-42210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The kidney flushes out toxic substances and metabolic waste products, and homeostasis is maintained owing to the kidney efforts. Unfortunately, kidney disease is one of the illnesses with a poor prognosis and a high death rate. The current investigation was set out to assess erythropoietin (EPO) potential therapeutic benefits against thioacetamide (TAA)-induced kidney injury in rats. EPO treatment improved kidney functions, ameliorated serum urea, creatinine, and malondialdehyde, increased renal levels of reduced glutathione, and slowed the rise of JAK2, STAT5, AMPK, and their phosphorylated forms induced by TAA. EPO treatment also greatly suppressed JAK2, Phosphatidylinositol 3-kinases, and The Protein Kinase R-like ER Kinase gene expressions and mitigated the histopathological alterations brought on by TAA toxicity. EPO antioxidant and anti-inflammatory properties protected TAA-damaged kidneys. EPO regulates AMPK, JAK2/STAT5, and pro-inflammatory mediator synthesis.
Collapse
Affiliation(s)
- Marawan A Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - Bassim M S A Mohamed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Shaimaa A Gad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany.
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hany M Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| |
Collapse
|
4
|
Li K, Gao L, Zhou S, Ma YR, Xiao X, Jiang Q, Kang ZH, Liu ML, Liu TX. Erythropoietin promotes energy metabolism to improve LPS-induced injury in HK-2 cells via SIRT1/PGC1-α pathway. Mol Cell Biochem 2023; 478:651-663. [PMID: 36001204 DOI: 10.1007/s11010-022-04540-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Acute kidney injury (AKI) is one of frequent complications of sepsis with high mortality. Mitochondria is the center of energy metabolism participating in the pathogenesis of sepsis-associated AKI, and SIRT1/PGC1-α signaling pathway plays a crucial role in the modulation of energy metabolism. Erythropoietin (EPO) exerts protective functions on chronic kidney disease. We aimed to assess the effects of EPO on cell damage and energy metabolism in a cell model of septic AKI. Renal tubular epithelial cells HK-2 were treated with LPS and human recombinant erythropoietin (rhEPO). Cell viability was detected by CCK-8 and mitochondrial membrane potential was determined using JC-1 fluorescent probe. Then the content of ATP, ADP and NADPH, as well as lactic acid, were measured for the assessment of energy metabolism. Oxidative stress was evaluated by detecting the levels of ROS, MDA, SOD and GSH. Pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β, were measured with ELISA. Moreover, qRT-PCR and western blot were performed to detect mRNA and protein expressions. shSIRT1 was used to knockdown SIRT1, while EX527 and SR-18292 were applied to inhibit SIRT1 and PGC1-α, respectively, to investigate the regulatory mechanism of rhEPO on inflammatory injury and energy metabolism. In LPS-exposed HK-2 cells, rhEPO attenuated cell damage, inflammation and abnormal energy metabolism, as indicated by the elevated cell viability, the inhibited oxidative stress, cell apoptosis and inflammation, as well as the increased mitochondrial membrane potential and energy metabolism. However, these protective effects induced by rhEPO were reversed after SIRT1 or PGC1-α inhibition. EPO activated SIRT1/PGC1-α pathway to alleviate LPS-induced abnormal energy metabolism and cell damage in HK-2 cells. Our study suggested that rhEPO played a renoprotective role through SIRT1/PGC1-α pathway, which supported its therapeutic potential in septic AKI.
Collapse
Affiliation(s)
- Kan Li
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Li Gao
- Department of Gynaecology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Sen Zhou
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiao Xiao
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Jiang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zhi-Hong Kang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Ming-Long Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Tian-Xi Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
5
|
Habas E, Rayani A, Habas AM, Akbar RA, Khan FY, Elzouki AN. Anemia in Chronic Kidney Disease Patients: An Update. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2022. [DOI: 10.1055/s-0042-1748774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractChronic kidney disease (CKD) is one of the most common disabling diseases globally. The main etiopathology of CKD is attributed to progressive renal fibrosis secondary to recurrent renal insults. Anemia is a known complication in CKD patients, associated with higher hospitalization rates and increased mortality risk. CKD-associated anemia (CKD-AA) is either due to true iron deficiency and/or functional iron deficiency anemia. There is new emerging evidence about the effects of erythropoiesis stimulating agents in the treatment of CKD-AA and their role in reversing and preventing kidney fibrosis in the early stages of CKD. This effect potentially provides new scopes in the prevention and treatment of CKD-AA and in decreasing the progression of CKD and the associated long-term complications. Epidemiology, pathophysiology, and treatments of CKD-AA will be discussed.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Department of Medicine, Facharzt Internal Medicine, Facharzt Nephrology, Hamad General Hospital, Doha, Qatar
| | - Amnna Rayani
- Department of Hematology, Facharzt Pediatric, Facharzt Hemato-Oncology, Tripoli Children Hospital, Tripoli University, Tripoli, Libya
| | - Aml M. Habas
- Department of Hematology, Facharzt Pediatric, Facharzt Hemato-Oncology, Tripoli Children Hospital, Tripoli University, Tripoli, Libya
| | - Raza Ali Akbar
- Department of Medicine, Hamad General Hospital, Doha, Qatar
| | | | | |
Collapse
|
6
|
Tan XY, Jing HY, Ma YR. Interleukin-33/ Suppression of Tumorigenicity 2 in Renal Fibrosis: Emerging Roles in Prognosis and Treatment. Front Physiol 2022; 12:792897. [PMID: 35046838 PMCID: PMC8761767 DOI: 10.3389/fphys.2021.792897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem that affects more than 10% of the population worldwide and has a high mortality rate. Therefore, it is necessary to identify novel treatment strategies for CKD. Incidentally, renal fibrosis plays a central role in the progression of CKD to end-stage renal disease (ESRD). The activation of inflammatory pathways leads to the development of renal fibrosis. In fact, interleukin-33 (IL-33), a newly discovered member of the interleukin 1 (IL-1) cytokine family, is a crucial regulator of the inflammatory process. It exerts pro-inflammatory and pro-fibrotic effects via the suppression of tumorigenicity 2 (ST2) receptor, which, in turn, activates other inflammatory pathways. Although the role of this pathway in cardiac, pulmonary, and hepatic fibrotic diseases has been extensively studied, its precise role in renal fibrosis has not yet been completely elucidated. Recent studies have shown that a sustained activation of IL-33/ST2 pathway promotes the development of renal fibrosis. However, with prolonged research in this field, it is expected that the IL-33/ST2 pathway will be used as a diagnostic and prognostic tool for renal diseases. In addition, the IL-33/ST2 pathway seems to be a new target for the future treatment of CKD. Here, we review the mechanisms and potential applications of the IL-33/ST2 pathway in renal fibrosis; such that it can help clinicians and researchers to explore effective treatment options and develop novel medicines for CKD patients.
Collapse
Affiliation(s)
- Xiao-Yang Tan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Yue Jing
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Sun CM, Zhang WY, Wang SY, Qian G, Pei DL, Zhang GM. Fer exacerbates renal fibrosis and can be targeted by miR-29c-3p. Open Med (Wars) 2021; 16:1378-1385. [PMID: 34595351 PMCID: PMC8439263 DOI: 10.1515/med-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
Aim Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. Method In silico reproduction of Mouse Kidney FibrOmics browser was performed to identify potential miR(s) and target gene(s). In vivo validation was performed in C57BL/6 mice with unilateral ureteral obstruction (UUO). In vitro validation was performed in rat kidney fibroblast NRK-49F cells. Mimics and inhibitors of miR-29c-3p were constructed. The target gene Fer was monitored by RT-PCR and western blotting. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in serum and media were measured by ELISA. Results The Fer expression and protein level were gradually increased during 14 days of UUO modeling. miR-29c-3p expression was strongly correlated with that of Fer. In vivo validation showed increased expressions of fibrosis-associated genes and increased phospoho-Smad3 level in the UUO model. Fer-knockdown (KD) significantly decreased expressions of fibrosis-associated genes. Pharmaceutical inhibition of Fer showed similar effects to miR-29c-3p, and miR inhibition showed a significant decrease of excretion of inflammatory factors. Conclusion Dysregulation of miR-29c-3p and Fer plays a role in RF. Pharmaceutical or genetic inhibition of Fer may serve as the potential treatment for RF.
Collapse
Affiliation(s)
- Chen-Min Sun
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Wen-Yi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu-Yan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Gang Qian
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Dong-Liang Pei
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guang-Ming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
8
|
García-Martín A, Navarrete C, Garrido-Rodríguez M, Prados ME, Caprioglio D, Appendino G, Muñoz E. EHP-101 alleviates angiotensin II-induced fibrosis and inflammation in mice. Biomed Pharmacother 2021; 142:112007. [PMID: 34385107 DOI: 10.1016/j.biopha.2021.112007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some cannabinoids showed anti-inflammatory and antifibrotic activities. EHP-101 is an oral lipidic formulation of the novel non-psychotropic cannabidiol aminoquinone VCE-004.8, which showed antifibrotic activity in murine models of systemic sclerosis induced by bleomycin. We herein examined the effect of EHP-101 on cardiac and other organ fibrosis in a mouse model induced by Angiotensin II. VCE-004.8 inhibited TGFβ- and Ang II-induced myofibroblast differentiation in cardiac fibroblasts detected by α-SMA expression. VCE-004.8 also inhibited Ang II-induced ERK 1 + 2 phosphorylation, NFAT activation and mRNA expression of IL1β, IL6, Col1A2 and CCL2 in cardiac fibroblasts. Mice infused with Ang II resulted in collagen accumulation in left ventricle, aortic, dermal, renal and pulmonary tissues; oral administration of EHP-101, Ajulemic acid and Losartan improved these phenotypes. In myocardial tissue, Ang II induced infiltration of T cells and macrophages together with the accumulation of collagen and Tenascin C; those were all reduced by either EHP-101 or Losartan treatment. Cardiac tissue RNA-Seq analyses revealed a similar transcriptomic signature for both treatments for inflammatory and fibrotic pathways. However, the gene set enrichment analysis comparing data from EHP-101 vs Losartan showed specific hallmarks modified only by EHP-101. Specifically, EHP-101 inhibited the expression of genes such as CDK1, TOP2A and MKi67 that are regulated to the E2 factor family of transcription factors. This study suggests that the oral administration of EHP-101 prevents and inhibits cardiac inflammation and fibrosis. Furthermore, EHP-101 inhibits renal, pulmonary and dermal fibrosis. EHP-101 could offer new opportunities in the treatment of cardiac fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Martin Garrido-Rodríguez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
9
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
10
|
Yu G, Guo M, Zou J, Zhou X, Ma Y. The efficacy of taking traditional Chinese medicine orally in renal interstitial fibrosis: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22181. [PMID: 32957343 PMCID: PMC7505365 DOI: 10.1097/md.0000000000022181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND By now, the incidence of chronic kidney disease (CKD) is increasing. The development of various CKD is attributed to the continuous aggravation of renal interstitial fibrosis (RIF) in the process of end-stage renal disease (ESRD). Oral treatment of traditional Chinese medicine (TCM) is one of the therapies for RIF. Randomized controlled trials (RCTs) of TCM treatment RIF have been reported, but its effectiveness and safety have yet been systematically investigated. Therefore, through the systematic analysis and meta-analysis, our study will summarize the effectiveness and safety of oral treatment RIF of TCM, in order to provides scientific reference for clinical practice. METHODS This protocol follows Preferred Reporting Items for Systematic Evaluation and Meta-Analysis. RCTs will be only selected. Such databases as the PubMed, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Excerpt Medical Database (Embase), WanFan Data, Chinese Biomedical Literature Database (CBM), WHO International Clinical Trials Registry Platform will be searched from the inception to June, 2020 to collect the RCTs about taking TCM orally in treating RIF. The literature according to the inclusion and exclusion criteria, data-extracted and the methodological quality evaluated will be performed independently by 2 reviewers. The clinical outcomes including renal function indices (Scr, BUN, 24-hour urinary protein quantity) and Indicators of RIF (TGF-β1, Notch1, Jagged-1). The risk of bias included in the RCTs will be evaluated by the bias risk assessment tool provided in the Cochrane System Evaluation Manual 5.1.0. Review Manager 5.3 provided by the Cochrane collaboration network will be used to process the data. RESULTS AND CONCLUSION Some more targeted and practical results about the efficacy of taking TCM orally in RIF have been provided by our study. The available evidence suggests that the therapeutic effects of combining TCM with Western medicine therapies is much better for RIF than Western medicine therapies only.
Collapse
Affiliation(s)
- Guang Yu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Mao Guo
- Pain Clinic, The People's Hospital of Luzhou, Luzhou
| | - Junju Zou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Xiaotao Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Yuerong Ma
- Pathology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|