1
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Li CL, Liu SF. Cellular and Molecular Biology of Mitochondria in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:7780. [PMID: 39063022 PMCID: PMC11276859 DOI: 10.3390/ijms25147780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by enduring airflow limitation and chronic inflammation. Growing evidence highlights mitochondrial dysfunction as a critical factor in COPD development and progression. This review explores the cellular and molecular biology of mitochondria in COPD, focusing on structural and functional changes, including alterations in mitochondrial shape, behavior, and respiratory chain complexes. We discuss the impact on cellular signaling pathways, apoptosis, and cellular aging. Therapeutic strategies targeting mitochondrial dysfunction, such as antioxidants and mitochondrial biogenesis inducers, are examined for their potential to manage COPD. Additionally, we consider the role of mitochondrial biomarkers in diagnosis, evaluating disease progression, and monitoring treatment efficacy. Understanding the interplay between mitochondrial biology and COPD is crucial for developing targeted therapies to slow disease progression and improve patient outcomes. Despite advances, further research is needed to fully elucidate mitochondrial dysfunction mechanisms, discover new biomarkers, and develop targeted therapies, aiming for comprehensive disease management that preserves lung function and enhances the quality of life for COPD patients.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, #123, Ta-Pei Road, Niaosong District, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Yang FW, Mai TL, Lin YCJ, Chen YC, Kuo SC, Lin CM, Lee MH, Su JC. Multipathway regulation induced by 4-(phenylsulfonyl)morpholine derivatives against triple-negative breast cancer. Arch Pharm (Weinheim) 2024; 357:e2300435. [PMID: 38314850 DOI: 10.1002/ardp.202300435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Phenotypic drug discovery (PDD) is an effective drug discovery approach by observation of therapeutic effects on disease phenotypes, especially in complex disease systems. Triple-negative breast cancer (TNBC) is composed of several complex disease features, including high tumor heterogeneity, high invasive and metastatic potential, and a lack of effective therapeutic targets. Therefore, identifying effective and novel agents through PDD is a current trend in TNBC drug development. In this study, 23 novel small molecules were synthesized using 4-(phenylsulfonyl)morpholine as a pharmacophore. Among these derivatives, GL24 (4m) exhibited the lowest half-maximal inhibitory concentration value (0.90 µM) in MDA-MB-231 cells. To investigate the tumor-suppressive mechanisms of GL24, transcriptomic analyses were used to detect the perturbation for gene expression upon GL24 treatment. Followed by gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, multiple ER stress-dependent tumor suppressive signals were identified, such as unfolded protein response (UPR), p53 pathway, G2/M checkpoint, and E2F targets. Most of the identified pathways triggered by GL24 eventually led to cell-cycle arrest and then to apoptosis. In summary, we developed a novel 4-(phenylsulfonyl)morpholine derivative GL24 with a strong potential for inhibiting TNBC cell growth through ER stress-dependent tumor suppressive signals.
Collapse
Affiliation(s)
- Fan-Wei Yang
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Te-Lun Mai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Che Kuo
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chia-Ming Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Hsuan Lee
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Barabutis N, Akhter MS. Unfolded protein response suppression potentiates LPS-induced barrier dysfunction and inflammation in bovine pulmonary artery endothelial cells. Tissue Barriers 2024; 12:2232245. [PMID: 37436424 DOI: 10.1080/21688370.2023.2232245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
The development of novel strategies to counteract diseases related to barrier dysfunction is a priority, since sepsis and acute respiratory distress syndrome are still associated with high mortality rates. In the present study, we focus on the effects of the unfolded protein response suppressor (UPR) 4-Phenylbutyrate (4-PBA) in Lipopolysaccharides (LPS)-induced endothelial injury, to investigate the effects of that compound in the corresponding damage. 4-PBA suppressed binding immunoglobulin protein (BiP) - a UPR activation marker - and potentiated LPS - induced signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated protein kinase (ERK) 1/2 activation. In addition to those effects, 4-PBA enhanced paracellular hyperpermeability in inflamed bovine pulmonary endothelial cells, and did not affect cell viability in moderate concentrations. Our observations suggest that UPR suppression due to 4-PBA augments LPS-induced endothelial injury, as well as the corresponding barrier disruption.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
5
|
Barabutis N, Fakir S. Growth hormone-releasing hormone beyond cancer. Clin Exp Pharmacol Physiol 2024; 51:40-41. [PMID: 37750473 DOI: 10.1111/1440-1681.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/22/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
6
|
de Cevins C, Delage L, Batignes M, Riller Q, Luka M, Remaury A, Sorin B, Fali T, Masson C, Hoareau B, Meunier C, Parisot M, Zarhrate M, Pérot BP, García-Paredes V, Carbone F, Galliot L, Nal B, Pierre P, Canard L, Boussard C, Crickx E, Guillemot JC, Bader-Meunier B, Bélot A, Quartier P, Frémond ML, Neven B, Boldina G, Augé F, Alain F, Didier M, Rieux-Laucat F, Ménager MM. Single-cell RNA-sequencing of PBMCs from SAVI patients reveals disease-associated monocytes with elevated integrated stress response. Cell Rep Med 2023; 4:101333. [PMID: 38118407 PMCID: PMC10772457 DOI: 10.1016/j.xcrm.2023.101333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.
Collapse
Affiliation(s)
- Camille de Cevins
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Laure Delage
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, 94400 Vitry-sur-Seine, France
| | - Maxime Batignes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Quentin Riller
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Anne Remaury
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Boris Sorin
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Tinhinane Fali
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Cécile Masson
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM UMS037 PASS, Plateforme de Cytométrie (CyPS), Paris, France
| | - Catherine Meunier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Brieuc P Pérot
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Víctor García-Paredes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Lou Galliot
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Béatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Luc Canard
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Charlotte Boussard
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Etienne Crickx
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, Créteil, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Brigitte Bader-Meunier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Alexandre Bélot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France; National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Pierre Quartier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Marie-Louise Frémond
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France; Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, 75015 Paris, France
| | - Bénédicte Neven
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Galina Boldina
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Fischer Alain
- Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France; Collège de France, Paris, France; Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP) 75015 Paris, France
| | - Michel Didier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Frédéric Rieux-Laucat
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Mickaël M Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|
7
|
Barabutis N, Siejka A, Akhter MS. Growth hormone-releasing hormone antagonists counteract hydrogen peroxide - induced paracellular hyperpermeability in endothelial cells. Growth Horm IGF Res 2023; 69-70:101534. [PMID: 37210756 PMCID: PMC10247445 DOI: 10.1016/j.ghir.2023.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Growth Hormone-Releasing Hormone (GHRH) is a hypothalamic peptide which regulates the release of Growth Hormone from the anterior pituitary gland, and has been involved in inflammatory processes. On the other hand, GHRH antagonists (GHRHAnt) were developed to counteract those effects. Herein we demonstrate for the first time that GHRHAnt can suppress hydrogen peroxide (H2O2) - induced paracellular hyperpermeability in bovine pulmonary artery endothelial cells. Increased production of reactive oxygen species (ROS) and barrier dysfunction have been associated with the development of potentially lethal disorders, including sepsis and acute respiratory distress syndrome (ARDS). Our study supports the protective actions of GHRHAnt in the impaired endothelium, and suggests that those compounds represent an exciting therapeutic possibility towards lung inflammatory disease.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
8
|
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology 2022; 164:6887354. [PMID: 36503995 PMCID: PMC9923806 DOI: 10.1210/endocr/bqac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The discovery of hypothalamic hormones propelled exciting advances in pharmacotherapy and improved life quality worldwide. Growth hormone-releasing hormone (GHRH) is a crucial element in homeostasis maintenance, and regulates the release of growth hormone from the anterior pituitary gland. Accumulating evidence suggests that this neuropeptide can also promote malignancies, as well as inflammation. Our review is focused on the role of that 44 - amino acid peptide (GHRH) and its antagonists in inflammation and vascular function, summarizing recent findings in the corresponding field. Preclinical studies demonstrate the protective role of GHRH antagonists against endothelial barrier dysfunction, suggesting that the development of those peptides may lead to new therapies against pathologies related to vascular remodeling (eg, sepsis, acute respiratory distress syndrome). Targeted therapies for those diseases do not exist.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Correspondence: Nektarios Barabutis, MSc, PhD, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Dr, Monroe, LA 71201, USA.
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Keith Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
9
|
Uddin MA, Akhter MS, Kubra KT, Barabutis N. Hsp90 inhibition protects brain endothelial cells against LPS-induced injury. Biofactors 2022; 48:926-933. [PMID: 35266593 PMCID: PMC10131175 DOI: 10.1002/biof.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Dysfunction of the blood-brain barrier (BBB) endothelium increases infiltration of lymphocytes and innate immune cells in the brain, leading to the development of neurological disorders. Heat shock protein 90 (Hsp90) inhibitors are anti-inflammatory agents and P53 inducers, which reduce the production of reactive oxygen species (ROS) in a diverse variety of human tissues. In this study, we investigate the effects of those compounds in LPS-induced brain endothelial inflammation, by utilizing human cerebral microvascular endothelial cells (hCMEC/D3). Our results suggest that Hsp90 inhibitors suppress inflammation by inhibiting the LPS-induced signal transducer and activator of transcription 3 (STAT3); and P38 activation. Moreover, those compounds reduce the P53 suppressors murine double minute 2 (MDM2) and murine double minute 4 (MDM4). Immunoglobulin heavy chain binding protein/glucose-regulated protein 78 (BiP/Grp78)-a key element of endothelial barrier integrity-was also increased by Hsp90 inhibition. Hence, we conclude that application of Hsp90 inhibitors in diseases related to BBB dysfunction may deliver a novel therapeutic possibility in the affected population.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
10
|
Abstract
Endothelial barrier dysfunction is associated with sepsis and lung injury, both direct and indirect. We discuss the involvement of unfolded protein response in the protective effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the vascular barrier, to reveal new possibilities in acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
11
|
Kubra KT, Uddin MA, Barabutis N. Tunicamycin Protects against LPS-Induced Lung Injury. Pharmaceuticals (Basel) 2022; 15:ph15020134. [PMID: 35215247 PMCID: PMC8876572 DOI: 10.3390/ph15020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/29/2022] Open
Abstract
The pulmonary endothelium is a dynamic semipermeable barrier that orchestrates tissue-fluid homeostasis; regulating physiological and immunological responses. Endothelial abnormalities are caused by inflammatory stimuli interacting with intracellular messengers to remodel cytoskeletal junctions and adhesion proteins. Those phenomena are associated with sepsis, acute lung injury, and acute respiratory distress syndrome. The molecular processes beyond those responses are the main interest of our group. Unfolded protein response (UPR) is a highly conserved molecular pathway resolving protein-folding defects to counteract cellular threats. An emerging body of evidence suggests that UPR is a promising target against lung and cardiovascular disease. In the present study, we reveal that Tunicamycin (TM) (UPR inducer) protects against lipopolysaccharide (LPS)-induced injury. The barrier function of the inflamed endothelium was evaluated in vitro (transendothelial and paracellular permeability); as well as in mice exposed to TM after LPS. Our study demonstrates that TM supports vascular barrier function by modulating actomyosin remodeling. Moreover, it reduces the internalization of vascular endothelial cadherin (VE-cadherin), enhancing endothelial integrity. We suggest that UPR activation may deliver novel therapeutic opportunities in diseases related to endothelial dysregulation.
Collapse
|
12
|
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol 2021; 101:108367. [PMID: 34794886 DOI: 10.1016/j.intimp.2021.108367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
The endothelial barrier regulates interstitial fluid homeostasis by transcellular and paracellular means. Dysregulation of this semipermeable barrier may lead to vascular leakage, edema, and accumulation of pro-inflammatory cytokines, inducing microvascular hyperpermeability. Investigating the molecular pathways involved in those events will most probably provide novel therapeutic possibilities in pathologies related to endothelial barrier dysfunction. Metformin (MET) is an anti-diabetic drug, opposes malignancies, inhibits cellular transformation, and promotes cardiovascular protection. In the current study, we assess the protective effects of MET in LPS-induced lung endothelial barrier dysfunction and evaluate the role of P53 in mediating the beneficial effects of MET in the vasculature. We revealed that this biguanide (MET) opposes the LPS-induced dysregulation of the lung microvasculature, since it suppressed the formation of filamentous actin stress fibers, and deactivated cofilin. To investigate whether P53 is involved in those phenomena, we employed the fluorescein isothiocyanate (FITC) - dextran permeability assay, to measure paracellular permeability. Our observations suggest that P53 inhibition increases paracellular permeability, and MET prevents those effects. Our results contribute towards the understanding of the lung endothelium and reveal the significant role of P53 in the MET-induced barrier enhancement.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Antoinette J Leo
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
13
|
Wang L, Zou H, Xiao X, Wu H, Zhu Y, Li J, Liu X, Shen Q. Abscisic acid inhibited reactive oxygen species-mediated endoplasmic reticulum stress by regulating the PPAR-γ signaling pathway in ARDS mice. Phytother Res 2021; 35:7027-7038. [PMID: 34791723 DOI: 10.1002/ptr.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of a respiratory disorder, and there are few effective therapies. Abscisic acid (ABA) has been proven to be effective in influenza and asthma. Herein, we explored the protective effect of ABA on the resolution of ARDS and the underlying mechanism. Mice were challenged with lipopolysaccharide (LPS) to establish an ARDS model. We found that ABA reduced pulmonary injury, with concomitant suppression of endoplasmic reticulum (ER) stress and reduction of reactive oxygen species (ROS) production. Furthermore, after the elimination of ROS by the specific inhibitor N-acetyl-L-cysteine (NAC), ABA did not further inhibit airway inflammation or ER stress in ARDS mice. In addition, ABA inhibited ROS production through nuclear factor erythroid 2-related factor 2 (Nrf2) activation in parallel with elevated levels of peroxisome proliferator activated receptor γ (PPAR-γ). Furthermore, the addition of a PPAR-γ antagonist abrogated the suppressive action of ABA on inflammation as well as on ER stress and oxidative stress, while NAC restored the protective effect of ABA in ARDS mice treated with a PPAR-γ antagonist. Collectively, ABA protects against LPS-induced lung injury through PPAR-γ signaling, and this effect may be associated with its inhibitory effect on ROS-mediated ER stress.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyun Zou
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Xiao
- Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Yan Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Monkley S, Overed-Sayer C, Parfrey H, Rassl D, Crowther D, Escudero-Ibarz L, Davis N, Carruthers A, Berks R, Coetzee M, Kolosionek E, Karlsson M, Griffin LR, Clausen M, Belfield G, Hogaboam CM, Murray LA. Sensitization of the UPR by loss of PPP1R15A promotes fibrosis and senescence in IPF. Sci Rep 2021; 11:21584. [PMID: 34732748 PMCID: PMC8566588 DOI: 10.1038/s41598-021-00769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is a direct consequence of cellular endoplasmic reticulum (ER) stress and a key disease driving mechanism in IPF. The resolution of the UPR is directed by PPP1R15A (GADD34) and leads to the restoration of normal ribosomal activity. While the role of PPP1R15A has been explored in lung epithelial cells, the role of this UPR resolving factor has yet to be explored in lung mesenchymal cells. The objective of the current study was to determine the expression and role of PPP1R15A in IPF fibroblasts and in a bleomycin-induced lung fibrosis model. A survey of IPF lung tissue revealed that PPP1R15A expression was markedly reduced. Targeting PPP1R15A in primary fibroblasts modulated TGF-β-induced fibroblast to myofibroblast differentiation and exacerbated pulmonary fibrosis in bleomycin-challenged mice. Interestingly, the loss of PPP1R15A appeared to promote lung fibroblast senescence. Taken together, our findings demonstrate the major role of PPP1R15A in the regulation of lung mesenchymal cells, and regulation of PPP1R15A may represent a novel therapeutic strategy in IPF.
Collapse
Affiliation(s)
- Susan Monkley
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Parfrey
- Cambridge Interstitial Lung Disease Service, Royal Papworth Hospital, Cambridge, UK
| | | | - Damian Crowther
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Nicola Davis
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Alan Carruthers
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard Berks
- Biological Services Group, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | | | - Ewa Kolosionek
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Karlsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leia R Griffin
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cory M Hogaboam
- Cedars-Sinai Department of Medicine, Los Angeles, CA, 90048, USA
| | - Lynne A Murray
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
15
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Zhang Y, Lim CU, Sikirzhytski V, Naderi A, Chatzistamou I, Kiaris H. Propensity to endoplasmic reticulum stress in deer mouse fibroblasts predicts skin inflammation and body weight gain. Dis Model Mech 2021; 14:272498. [PMID: 34661243 PMCID: PMC8543066 DOI: 10.1242/dmm.049113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
The unfolded protein response (UPR) is involved in the pathogenesis of metabolic disorders, yet whether variations in the UPR among individuals influence the propensity for metabolic disease remains unexplored. Using outbred deer mice as a model, we show that the intensity of UPR in fibroblasts isolated early in life predicts the extent of body weight gain after high-fat diet (HFD) administration. Contrary to those with intense UPR, animals with moderate UPR in fibroblasts and therefore displaying compromised stress resolution did not gain body weight but developed inflammation, especially in the skin, after HFD administration. Fibroblasts emerged as potent modifiers of this differential responsiveness to HFD, as indicated by the comparison of the UPR profiles of fibroblasts responding to fatty acids in vitro, by correlation analyses between UPR and proinflammatory cytokine-associated transcriptomes, and by BiP (also known as HSPA5) immunolocalization in skin lesions from animals receiving HFD. These results suggest that the UPR operates as a modifier of an individual's propensity for body weight gain in a manner that, at least in part, involves the regulation of an inflammatory response by skin fibroblasts. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.,Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Barabutis N. Growth Hormone Releasing Hormone in Endothelial Barrier Function. Trends Endocrinol Metab 2021; 32:338-340. [PMID: 33771415 PMCID: PMC8102361 DOI: 10.1016/j.tem.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Growth hormone releasing hormone (GHRH) is the integral regulator of the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis. It exerts mitogenic effects in a plethora of progressive cancers. Recent evidence suggests the emerging role of that 44-amino acid (aa) neuropeptide in lung endothelial barrier function (EBF), which will be discussed herein.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
18
|
Uddin MA, Akhter MS, Kubra KT, Whitaker KE, Shipley SL, Smith LM, Barabutis N. Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. BRAIN DISORDERS 2021; 1. [PMID: 33569547 PMCID: PMC7869856 DOI: 10.1016/j.dscb.2020.100001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The brain endothelium is an integral element of the blood-brain barrier (BBB). Dysfunction of this formation due to increased generation of reactive oxygen species (ROS) progresses the establishment of neurological disorders including stroke and traumatic brain injury. Heat shock protein 90 inhibitors are anti-inflammatory agents, and their activities are mediated, at least in part, by P53. This is a tumor suppressor protein which regulates the opposing activities of Rac1 and RhoA in the cellular cytoskeleton. In the present study we investigated the role of Hsp90 inhibitors in the H2O2-induced brain endothelium breakdown, by employing human cerebral microvascular endothelial cells (hCMEC/D3). Our findings suggest that H2O2 downregulates P53 by enhancing the P53 suppressor mouse double minute 2 homolog (MDM2), as well as by increasing the apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref1). The H2O2 – triggered violation of the brain endothelium barrier was reflected in measurements of transendothelial resistance, and the increased expression of the key cytoskeletal modulators cofilin and myosin light chain 2 (MLC2). Treatment of the hCMEC/D3 cells with Hsp90 inhibitors counteracted those events, and reduced the generation of the hydrogen peroxide – induced reactive oxygen species. Hence, our study suggests that Hsp90 inhibition supports the BBB integrity, and may represent a promising therapeutic approach for disorders associated with brain endothelium breakdown; including COVID-19.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Kathryn E Whitaker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Summer L Shipley
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Landon M Smith
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
19
|
Uddin MA, Akhter MS, Kubra KT, Siejka A, Barabutis N. Metformin in acute respiratory distress syndrome: An opinion. Exp Gerontol 2020; 145:111197. [PMID: 33310152 PMCID: PMC7834182 DOI: 10.1016/j.exger.2020.111197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
Senior individuals are more susceptible to the irreversible outcomes of endothelial barrier dysfunction, the hallmark of Acute Respiratory Distress Syndrome (ARDS). The Severe Acute Respiratory Syndrome Coronovirus 2 (SARS-CoV-2) - inflicted ARDS delivers the devastating outcomes of the COVID-19 worldwide. Endothelial hyperpermeability has been associated with both the progression and establishment of the COVID-19 - related respiratory failure. In the present study we investigated the in vitro effects of Metformin in the permeability of bovine pulmonary artery endothelial cells. Our preliminary results suggest that moderate doses (0.1, 0.5, 1.0 mM) of this anti-diabetic agent enhance the vascular barrier integrity, since it produces an increase in the transendothelial resistance of endothelial monolayers. Thus, we speculate that Metformin may deliver a new therapeutic possibility in ARDS, alone or in combination with other barrier enhancers.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
20
|
Uddin MA, Akhter MS, Kubra KT, Barabutis N. P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr Res Physiol 2020; 3:30-33. [PMID: 32724900 PMCID: PMC7386399 DOI: 10.1016/j.crphys.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) represent a significant cause of morbidity and mortality in critically ill hospitalized patients. Emerging evidence suggest that the expression levels of P53 in the lungs are associated with the supportive effects of heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists in the endothelium. In the current study, we employed an in vivo model of intratracheal administration of lipopolysaccharides (LPS)-induced ALI to investigate the role of P53 in counteracting LPS-induced lung inflammatory responses. In wild type mice, LPS induced the expression of IL-1α, IL-1β, and TNFα in the lungs, increased bronchoalveolar lavage fluid protein concentration, and activated cofilin. Remarkably; those responses were more potent in P53 knockout mice, suggesting the crucial role of P53 in orchestrating rigorous endothelial defenses against inflammatory stimuli. The present study supports previous endeavors on the protective role of P53 against lung inflammatory disease, and enrich our knowledge on the development of medical countermeasures against ARDS.
Collapse
Affiliation(s)
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
21
|
Akhter MS, Uddin MA, Schally AV, Kubra KT, Barabutis N. Involvement of the unfolded protein response in the protective effects of growth hormone releasing hormone antagonists in the lungs. J Cell Commun Signal 2020; 15:125-129. [PMID: 33185812 PMCID: PMC7661822 DOI: 10.1007/s12079-020-00593-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Growth hormone releasing hormone (GHRH) antagonists enhance endothelial barrier function and counteract the LPS-induced lung endothelial hyperpermeability, the cardinal feature of the acute respiratory distress syndrome (ARDS). The unfolded protein response (UPR) is a multifaceted molecular mechanism, strongly involved in tissue defense against injury. The current study introduces the induction of UPR by GHRH antagonists, since those peptides induced several UPR activation markers, including the inositol-requiring enzyme-1α (IRE1α), the protein kinase RNA-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). On the other hand, the GHRH agonist MR-409 exerted the opposite effects. Furthermore, GHRH antagonists counteracted the kifunensine (UPR suppressor)-induced lung endothelial barrier dysfunction. Our observations suggest that UPR mediates, at least in part, the protective effects of GHRH antagonists in the lung microvasculature. To the best of our knowledge; this is the first study to provide experimental evidence in support of the hypothesis that UPR induction is a novel mechanism by which GHRH antagonists oppose severe human disease, including ARDS.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Divisions of Medical Oncology and Endocrinology, Department of Medicine and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
22
|
Barabutis N. P53 in acute respiratory distress syndrome. Cell Mol Life Sci 2020; 77:4725-4727. [PMID: 32886127 PMCID: PMC7471635 DOI: 10.1007/s00018-020-03629-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
P53 is a tumor suppressor protein, associated with strong anti-inflammatory activities. Recent evidence suggest that this transcription factor counteracts lung inflammatory diseases, including the lethal acute respiratory distress syndrome. Herein we provide a brief discussion on the relevant topic.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
23
|
Barabutis N. Unfolded protein response in the COVID-19 context. AGING AND HEALTH RESEARCH 2020; 1:100001. [PMID: 33330852 PMCID: PMC7569417 DOI: 10.1016/j.ahr.2020.100001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) maintains cellular homeostasis by regulating key elements of cellular growth and defense. Recent evidence suggests that this mechanism affects the vascular barrier function, by modulating lung endothelial permeability. Dysregulation of this barrier contributes in the irreversible outcomes of the SARS-CoV-2 - inflicted acute respiratory distress syndrome (ARDS). Thus, it is highly probable that the targeted activation of those UPR components in charge of repairing the destructed lung endothelium of the COVID-19 patients, may deliver a promising therapeutic possibility for those subjected to the devastating outcomes of the ongoing pandemic.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
24
|
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Luminespib counteracts the Kifunensine-induced lung endothelial barrier dysfunction. Curr Res Toxicol 2020; 1:111-115. [PMID: 33094291 PMCID: PMC7575137 DOI: 10.1016/j.crtox.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unfolded protein response (UPR) suppression by Kifunensine has been associated with lung hyperpermeability, the hallmark of Acute Respiratory Distress Syndrome. The present study investigates the effects of the heat shock protein 90 inhibitor Luminespib (AUY-922) towards the Kifunensine-triggered lung endothelial dysfunction. Our results indicate that the UPR inducer Luminespib counteracts the effects of Kifunensine in both human and bovine lung endothelial cells. Hence, we suggest that UPR manipulation may serve as a promising therapeutic strategy against potentially lethal respiratory disorders, including the ARDS related to COVID-19.
Collapse
Affiliation(s)
| | | | | | - Nektarios Barabutis
- Corresponding author at: School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States of America.
| |
Collapse
|
25
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
26
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|