1
|
Li Z, Chen J, Huang Z, Huang W, Wang K, Liang X, Su W. Topical application of 666-15, a potent inhibitor of CREB, alleviates alkali-induced corneal neovascularization. Exp Eye Res 2025; 250:110165. [PMID: 39571779 DOI: 10.1016/j.exer.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
Abstract
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins. This study aimed to assess the impact of 666-15, a potent inhibitor of CREB, on angiogenesis using human microvascular retinal endothelial cells (HMRECs), RAW 264.7 macrophage cell line and alkali-induce CNV mouse model. In vivo, the topical application of 666-15 (0.05 mg/mL) to the alkali-burn corneas led to 45% reduction in CNV. Additionally, in vitro treatment with 666-15 is effective in suppressing the migration, proliferation, and tube formation by HMRECs. Furthermore, treatment with 666-15 resulted in a down-regulation of pro-angiogenic cytokines expression, including VEGF-A, TGF-β1, b-FGF, and MMP-2 but simultaneously increasing anti-angiogenic cytokines expression, such as ADAMTS-1, Thrombospondin-1 (Tsp-1) and Tsp-2, both in alkali-burn corneas and HMRECs. And 666-15 inhibited the recruitment and the cytokines expression (VEGF-A, MMP-2, IL-1β, TNF-α, MCP-1 and MIP-1) of macrophage. Our findings revealed that 666-15 may suppress the function of endothelial cells and angiogenesis by restoring the homeostasis of pro-angiogenic stimuli, suggesting its potential as a therapeutic agent in the treatment of CNV and other angiogenesis-driven diseases.
Collapse
Affiliation(s)
- Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kerui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
2
|
Zhang H, Zhang K, Zhang QS, Wang L, Gao YH, Xu GY, Long D, Wang H, Hu Y. A peptidic network antibody inhibits both angiogenesis and inflammatory response. J Control Release 2023; 362:715-725. [PMID: 37699470 DOI: 10.1016/j.jconrel.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Corneal neovascularization (CNV) is a global threat to human health. Traditional anti-angiogenesis agent may have therapy effect, while the inflammation in disease area remains unsolved. Herein, we reported two binding-induced fibrillogenesis (BIF) peptides as peptidic network antibodies for high-efficient and long-lasting anti-angiogenesis with reduced inflammatory response. BIF peptides could self-assemble into nanoparticles and further perform BIF behavior through binding Ca2+. In vitro, the migration of integrin αvβ3 highly expressed endothelial cells was inhibited by BIF peptides. In vivo, one BIF peptide (0.012 mg/Kg) exhibited higher anti-angiogenesis effect than monoclonal antibody bevacizumab (0.96 mg/Kg) in a CNV rabbit model on day 14, despite that the dose of BIF was only 1.3% of bevacizumab. Meanwhile, the inflammatory response, such as PI3 kinase/Akt pathway in CNV was successfully inhibited as well. The peptidic network antibody could block integrin αvβ3 via a long-term retention mode, which led to long-term therapeutic effect. The study provides BIF peptides as promising therapeutic agents for both anti-angiogenesis and reduced inflammatory response.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Qing-Shi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Yong-Hong Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Guo-Yang Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Da Long
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600, Yishan Road, Shanghai 200233, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Ying Hu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600, Yishan Road, Shanghai 200233, China.
| |
Collapse
|
3
|
Li J, Han J, Shi Y, Liu M. Rapamycin inhibits corneal inflammatory response and neovascularization in a mouse model of corneal alkali burn. Exp Eye Res 2023:109539. [PMID: 37315833 DOI: 10.1016/j.exer.2023.109539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Alkali burn-induced corneal injury often causes inflammation and neovascularization and leads to compromised vision. We previously reported that rapamycin ameliorated corneal injury after alkali burns by methylation modification. In this study, we aimed to investigate the rapamycin-medicated mechanism against corneal inflammation and neovascularization. Our data showed that alkali burn could induce a range of different inflammatory response, including a stark upregulation of pro-inflammatory factor expression and an increase in the infiltration of myeloperoxidase- and F4/80-positive cells from the corneal limbus to the central stroma. Rapamycin effectively downregulated the mRNA expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), toll-like receptor 4 (TLR4), nucleotide binding oligomerization domain-like receptors (NLR) family pyrin domain-containing 3 (NLRP3), and Caspase-1, and suppressed the infiltration of neutrophils and macrophages. Inflammation-related angiogenesis mediated by matrix metalloproteinase-2 (MMP-2) and rapamycin restrained this process by inhibiting the TNF-α upregulation in burned corneas of mice. Rapamycin also restrained corneal alkali burn-induced inflammation by regulating HIF-1α/VEGF-mediated angiogenesis and the serum cytokines TNF-α, IL-6, Interferon-gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The findings of this study indicated rapamycin may reduce inflammation-associated infiltration of inflammatory cells, shape the expression of cytokines, and balance the regulation of MMP-2 and HIF-1α-mediated inflammation and angiogenesis by suppressing mTOR activation in corneal wound healing induced by an alkali injury. It offered novel insights relevant for a potent drug for treating corneal alkali burn.
Collapse
Affiliation(s)
- Jiande Li
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, Gansu, China.
| | - Jiangyuan Han
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Minrui Liu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
4
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
5
|
Fan X, Qiu J, Yuan T, Zhang J, Xu J. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation. Front Immunol 2022; 13:1090877. [PMID: 36591243 PMCID: PMC9802119 DOI: 10.3389/fimmu.2022.1090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation. Methods A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4+ T cells and macrophages in the draining lymph nodes (DLNs) was examined by flow cytometry. In vitro, HUVECs were cultured under hypoxia or incubated with TNF-α to mimic the hypoxic and inflammatory microenvironment favoring neovascularization in corneal allograft rejection. Multiple angiogenic processes including proliferation, migration, invasion and tube formation of HUVECs in hypoxia with or without PL treatment were routinely evaluated. The influence of PL treatment on TNF-α-induced pro-inflammation in HUVECs was investigated by real-time PCR and ELISA. Results In vivo, PL treatment effectively attenuated corneal allograft rejection, paralleled by coincident suppression of neovascularization and alleviation of inflammatory response. In vitro, PL distinctively inhibited hypoxia-induced angiogenic processes in HUVECs. Two key players in hypoxia-induced angiogenesis, HIF-1α and VEGF-A were significantly suppressed by PL treatment. Also, TNF-α-induced pro-inflammation in HUVECs was hampered by PL treatment, along with a pronounced reduction in ICAM-1, VCAM-1, CCL2, and CXCL5 expression. Conclusions The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jini Qiu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Tianjie Yuan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| |
Collapse
|
6
|
Lan C, Liu G, Huang L, Wang X, Tan J, Wang Y, Fan N, Zhu Y, Yu M, Liu X. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35446346 PMCID: PMC9034725 DOI: 10.1167/iovs.63.4.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.
Collapse
Affiliation(s)
- Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|