1
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
2
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Li S, Fang W, Zheng J, Peng Z, Yu B, Chen C, Zhang Y, Jiang W, Yuan S, Zhang L, Zhang X. Whole-transcriptome defines novel glucose metabolic subtypes in colorectal cancer. J Cell Mol Med 2024; 28:e18065. [PMID: 38116696 PMCID: PMC10902307 DOI: 10.1111/jcmm.18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.
Collapse
Affiliation(s)
- Shaohua Li
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Wei Fang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Jianfeng Zheng
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Zhiqiang Peng
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Biyue Yu
- School of Life SciencesHebei UniversityBaodingChina
| | - Chunhui Chen
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Yuting Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Wenli Jiang
- School of Life SciencesHebei UniversityBaodingChina
| | - Shuhui Yuan
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Xueli Zhang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| |
Collapse
|
4
|
Bi H, Ma L, Zhong X, Long G. Multiple-microarray analysis for identification of key genes involved in diabetic nephropathy. Medicine (Baltimore) 2023; 102:e35985. [PMID: 37986381 PMCID: PMC10659630 DOI: 10.1097/md.0000000000035985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
The purpose of our study was to discover genes with significantly aberrant expression in diabetic nephropathy (DN) and to determine their potential mechanism. We acquired renal tubules, glomerulus and blood samples data from DN patients and controls from the GEO database. The differentially expressed genes (DEGs) in renal tubules, glomerulus and blood samples between DN patients and controls were studied. Based on these DEGs, we carried out the functional annotation and constructed protein-protein interaction (PPI) network. By comparing DN patients and controls of DEGs, we acquired the shared DGEs in renal tubules, glomerulus and blood samples of DN patients and controls. DN patients compared to controls, we obtained 3000 DEGs, 3064 DEGs, and 2296 DEGs in renal tubules, glomerulus and blood samples, respectively. The PPI networks of top 40 DEGs in renal tubules, glomerulus and blood samples was consisted of 229 nodes and 229 edges, 540 nodes and 606 edges, and 132 nodes and 124 edges, respectively. In total, 21 shared genes were finally found, including CASP3, DHCR24, CXCL1, GYPC, INHBA, LTF, MT1G, MUC1, NINJ1, PFKFB3, PPP1R3C, CCL5, SRSF7, PHLDA2, RBM39, WTAP, BASP1, PLK2, PDK2, PNPLA4, and SNED1. These genes may be associated with the DN process. Our study provides a basis to explore the potential mechanism and identify novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Hui Bi
- Department of Internal Medicine, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Ma
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Xu Zhong
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Gang Long
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
5
|
Zhang K, Fu Z, Zhang Y, Chen X, Cai G, Hong Q. The role of cellular crosstalk in the progression of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1173933. [PMID: 37538798 PMCID: PMC10395826 DOI: 10.3389/fendo.2023.1173933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes, and its main manifestations are progressive proteinuria and abnormal renal function, which eventually develops end stage renal disease (ESRD). The pathogenesis of DN is complex and involves many signaling pathways and molecules, including metabolic disorders, genetic factors, oxidative stress, inflammation, and microcirculatory abnormalities strategies. With the development of medical experimental techniques, such as single-cell transcriptome sequencing and single-cell proteomics, the pathological alterations caused by kidney cell interactions have attracted more and more attention. Here, we reviewed the characteristics and related mechanisms of crosstalk among kidney cells podocytes, endothelial cells, mesangial cells, pericytes, and immune cells during the development and progression of DN and highlighted its potential therapeutic effects.
Collapse
|
6
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
7
|
Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1048139. [PMID: 36568106 PMCID: PMC9768367 DOI: 10.3389/fendo.2022.1048139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation and immune response are involved in the pathogenesis of diabetic nephropathy (DN). However, the specific immune-associated signature during DN development is unclear. Our study aimed to reveal the roles of immune-related genes during DN progression. METHODS The GSE30529 and GSE30528 datasets were acquired from the Gene Expression Omnibus (GEO) database. Then, the intersection between differentially expressed genes (DEGs) and immune score-related genes (ISRGs) was screened. Subsequently, functional enrichment analyses were performed. The different immune phenotype-related subgroups were finally divided using unsupervised clustering. The core genes were identified by WGCNA and the protein-protein interaction (PPI) network. xCell algorithm was applied to assess the proportion of immune cell infiltration. RESULTS 92 immune score-related DEGs (ISRDEGs) were identified, and these genes were enriched in inflammation- and immune-associated pathways. Furthermore, two distinct immune-associated subgroups (C1 and C2) were identified, and the C1 subgroup exhibited activated immune pathways and a higher percentage of immune cells compared to the C2 subgroup. Two core genes (LCK and HCK) were identified and all up-regulated in DN, and the expressions were verified using GSE30122, GSE142025, and GSE104954 datasets. GSEA indicated the core genes were mainly enriched in immune-related pathways. Correlation analysis indicated LCK and HCK expressions were positively correlated with aDC, CD4+ Tem, CD8+T cells, CD8+ Tem, and mast cells. CONCLUSIONS We identified two immune-related genes and two immune-associated subgroups, which might help to design more precise tailored immunotherapy for DN patients.
Collapse
Affiliation(s)
- Kunna Lu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yan Fu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Guanghong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Mingfeng Cao,
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Mingfeng Cao,
| |
Collapse
|