1
|
Stocco E, Emmi A, De Caro R, Porzionato A, Macchi V. Knee adipose tissue: from its implication in osteoarthritis to its supposed role in tissue engineering. NPJ AGING 2025; 11:5. [PMID: 39900591 PMCID: PMC11790864 DOI: 10.1038/s41514-025-00195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
| |
Collapse
|
2
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
3
|
Nakanishi S, Tsutsumi M, Kitano M, Kitagawa T, Miyashita T, Wada M, Kudo S. Effect of isometric quadriceps exercise on local microcirculation of the infrapatellar fat pad in female patients with knee osteoarthritis. Osteoarthritis Cartilage 2024; 32:1319-1326. [PMID: 38824995 DOI: 10.1016/j.joca.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE To elucidate the local microcirculation of the infrapatellar fat pad (IFP) in patients with knee osteoarthritis (KOA) by determining the changes in IFP hardness and hemoglobin concentration during isometric quadriceps exercise (IQE). DESIGN In this observational cross-sectional study, patients diagnosed with bilateral KOA were included in the KOA group (30 knees), healthy older adults in the control group (20 knees), and younger adults in the young group (20 knees). Ultrasonography was performed at rest and during IQE to measure IFP hardness based on shear wave velocity. Near-infrared spectroscopy was performed to measure oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), and total hemoglobin (cHb) in the IFP before (Baseline), during (IQE task), and after IQE (Post). IFP hardness and O2Hb, HHb, and cHb concentration were analyzed using a linear mixed model for the groups and measurement points. RESULTS During IQE, IFP hardness changes were significantly less in the KOA group than in the other groups (KOA: 95 % confidence intervals (CIs) [-0.854, 0.028]; control: 95 % CI [-0.941, -0.341]; and young: 95 % CI [-2.305, -1.706]). In the KOA group, O2Hb concentration exhibited no significant changes at Post compared with Baseline; however, significant changes were observed in the other groups (KOA: 95 % CI [-1.176, 0.423]; control: 95 % CI [-1.452, -0.276]; and young: 95 % CI [-4.062, -2.102]). CONCLUSIONS During IQE, changes in hardness and hemoglobin concentration in the IFP were not significant in the KOA group, suggesting impaired local microcirculation of the IFP.
Collapse
Affiliation(s)
- Syoya Nakanishi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan; Wada Orthopaedic Clinic, Osaka, Japan
| | - Masahiro Tsutsumi
- Inclusive Medical Sciences Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Masashi Kitano
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan; mediVR, Inc., Tokyo, Japan
| | - Takashi Kitagawa
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan; Department of Rehabilitation, Higashiosaka Hospital, Osaka, Japan
| | - Toshinori Miyashita
- Inclusive Medical Sciences Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan; Osaka Bay Clinic, Morinomiya University of Medical Sciences, Osaka, Japan
| | | | - Shintarou Kudo
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan; Inclusive Medical Sciences Research Institute, Morinomiya University of Medical Sciences, Osaka, Japan; AR-Ex Medical Research Center, Tokyo, Japan.
| |
Collapse
|
4
|
Yue S, Zhai G, Zhao S, Liang X, Liu Y, Zheng J, Chen X, Dong Y. The biphasic role of the infrapatellar fat pad in osteoarthritis. Biomed Pharmacother 2024; 179:117364. [PMID: 39226725 DOI: 10.1016/j.biopha.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. It is a whole organ disease characterized by cartilage degeneration and varying degrees of synovitis, involving pathological changes in all joint tissues, such as cartilage, subchondral bone, ligaments, meniscus, synovium, and infrapatellar fat pad (IPFP). IPFP is the largest adipose tissue structure in the knee joint and is composed of fat cells, immune cells and blood vessels. Moreover, IPFP is located close to the cartilage and bone surface so that it may reduce the impact of loading and absorb forces generated through the knee joint, and may have a protective role in joint health. IPFP has been shown to release various cytokines and adipokines that play pro-inflammatory and pro-catabolic roles in cartilage, promoting OA progression. Intra-articular injections of IPFP-derived mesenchymal stem cells and exosomes have been shown to reduce pain and prevent OA progression in patients with knee OA. Previous studies have shown that IPFP has a biphasic effect on OA progression. This article reviews the latest research progress of IPFP, discusses the role and mechanism of IPFP in OA, provide new intervention strategies for the treatment of OA. This article will also discuss the handling of IPFP during the procedure of total knee arthroplasty.
Collapse
Affiliation(s)
- Songkai Yue
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Ganggang Zhai
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Siyu Zhao
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaming Liang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yunke Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xiaoyang Chen
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Wang MG, Seale P, Furman D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. NPJ AGING 2024; 10:34. [PMID: 39009582 PMCID: PMC11250832 DOI: 10.1038/s41514-024-00159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and accounts for nearly $140 billion in annual healthcare expenditures only in the United States. Obesity, aging, and joint injury are major risk factors for OA development and progression, but the mechanisms contributing to pathology remain unclear. Emerging evidence suggests that cellular dysregulation and inflammation in joint tissues, including intra-articular adipose tissue depots, may contribute to disease severity. In particular, the infrapatellar fat pad (IFP), located in the knee joint, which provides a protective cushion for joint loading, also secretes multiple endocrine factors and inflammatory cytokines (inflammaging) that can regulate joint physiology and disease. Correlates of cartilage degeneration and OA-associated disease severity include inflammation and fibrosis of IFP in model organisms and human studies. In this article, we discuss recent progress in understanding the roles and regulation of intra-articular fat tissue in regulating joint biology and OA.
Collapse
Affiliation(s)
- Magnolia G Wang
- Department of Biology, School of Arts and Sciences, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Furman
- Center for AI and Data Science of Aging, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University, Stanford, CA, 94305, USA.
- IIMT, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, 29, Argentina.
| |
Collapse
|
6
|
Afzali MF, Sykes MM, Burton LH, Patton KM, Lee KR, Seebart C, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS. Removal of the infrapatellar fat pad and associated synovium benefits female guinea pigs in the Dunkin Hartley model of idiopathic osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:43. [PMID: 38911554 PMCID: PMC11193561 DOI: 10.21037/atm-23-1886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024]
Abstract
Background Several tissues contribute to the onset and advancement of knee osteoarthritis (OA). One tissue type that is worthy of closer evaluation, particularly in the context of sex, is the infrapatellar fat pad (IFP). We previously demonstrated that removal of the IFP had short-term beneficial effects for a cohort of male Dunkin-Hartley guinea pigs. The present project was designed to elucidate the influence of IFP removal in females of this OA-prone strain. It was hypothesized that resection of the IFP would reduce the development of OA in knees of a rodent model predisposed to the disease. Methods Female guinea pigs (n=16) were acquired at an age of 2.5 months. Surgical removal of the IFP and associated synovium complex (IFP/SC) was executed at 3 months of age. One knee had the IFP/SC resected; a comparable sham surgery was performed on the contralateral knee. All animals were subjected to voluntary enclosure monitoring and dynamic weight-bearing, as well as compulsory treadmill-based gait analysis monthly; baseline data was collected prior to surgery. Guinea pigs were euthanized at 7 months. Knees from eight animals were evaluated via histology, mRNA expression, and immunohistochemistry (IHC); knees from the remaining eight animals were allocated to microcomputed tomography (microCT), biomechanical analyses (whole joint testing and indentation relaxation testing), and atomic absorption spectroscopy (AAS). Results Fibrous connective tissue (FCT) replaced the IFP/SC. Mobility/gait data indicated that unilateral IFP/SC removal did not affect bilateral hindlimb movement. MicroCT demonstrated that osteophytes were not a significant feature of OA in this sex; however, trabecular thickness (TbTh) in medial femorae decreased in knees containing the FCT. Histopathology scores were predominantly influenced by changes in the lateral tibia, which demonstrated that histologic signs of OA were increased in knees containing the native IFP/SC versus those with the FCT. Similarly, indentation testing demonstrated higher instantaneous and equilibrium moduli in the lateral tibial articular cartilage of control knees with native IFPs. AAS of multiple tissue types associated with the knee revealed that zinc was the major trace element influenced by removal of the IFP/SC. Conclusions Our data suggest that the IFP/SC is a significant component driving knee OA in female guinea pigs and that resection of this tissue prior to disease has short-term benefits. Specifically, the formation of the FCT in place of the native tissue resulted in decreased cartilage-related OA changes, as demonstrated by reduced Osteoarthritis Research Society International (OARSI) histology scores, as well as changes in transcript, protein, and cartilage indentation analyses. Importantly, this model provides evidence that sex needs to be considered when investigating responses and associated mechanisms seen with this intervention.
Collapse
Affiliation(s)
- Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Madeline M. Sykes
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lindsey H. Burton
- Department of Clinical Sciences, C. Wayne Mcllwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Kayley M. Patton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Koryn R. Lee
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Cassie Seebart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicole Vigon
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ryan Ek
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gerardo E. Narez
- Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Angela J. Marolf
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Katie J. Sikes
- Department of Clinical Sciences, C. Wayne Mcllwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
8
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
9
|
Gan X, Wang X, Huang Y, Li G, Kang H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024; 12:923. [PMID: 38672277 PMCID: PMC11048369 DOI: 10.3390/biomedicines12040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review critically evaluates advancements in multifunctional hydrogels, particularly focusing on their applications in osteoarthritis (OA) therapy. As research evolves from traditional natural materials, there is a significant shift towards synthetic and composite hydrogels, known for their superior mechanical properties and enhanced biodegradability. This review spotlights novel applications such as injectable hydrogels, microneedle technology, and responsive hydrogels, which have revolutionized OA treatment through targeted and efficient therapeutic delivery. Moreover, it discusses innovative hydrogel materials, including protein-based and superlubricating hydrogels, for their potential to reduce joint friction and inflammation. The integration of bioactive compounds within hydrogels to augment therapeutic efficacy is also examined. Furthermore, the review anticipates continued technological advancements and a deeper understanding of hydrogel-based OA therapies. It emphasizes the potential of hydrogels to provide tailored, minimally invasive treatments, thus highlighting their critical role in advancing the dynamic field of biomaterial science for OA management.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiwan Huang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
10
|
Stocco E, Contran M, Fontanella CG, Petrelli L, Toniolo I, Emmi A, Romanato F, Porzionato A, De Caro R, Macchi V. The suprapatellar fat pad: A histotopographic comparative study. J Anat 2024; 244:639-653. [PMID: 38030148 PMCID: PMC10941559 DOI: 10.1111/joa.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
The suprapatellar fat pad is an adipose tissue located in the anterior knee whose role in osteoarthritis is still debated. Considering that anatomy drives function, the aim of this histotopographic study was to investigate the specific morphological features of the suprapatellar fat pad versus the infrapatellar fat pad in the absence of osteoarthritis, for a broad comparative analysis. Suprapatellar fat pad and infrapatellar fat pad tissue samples (n = 10/group) underwent microscopical/immunohistochemical staining and transmission electron microscopy analysis; thus, tissue-specific characteristics (i.e., vessels and nerve endings presence, lobuli, adipocytes features, septa), including extracellular matrix proteins prevalence (collagens, elastic fibers), were focused. Multiphoton microscopy was also adopted to evaluate collagen fiber orientation within the samples by Fast Fourier Transform (coherency calculation). The absence of inflammation was confirmed, and comparable counted vessels and nerve endings were shown. Like the infrapatellar fat pad, the suprapatellar fat pad appeared as a white adipose tissue with lobuli and septa of comparable diameter and thickness, respectively. Tissue main characteristics were also proved by both semithin sections and transmission electron microscopy analysis. The suprapatellar fat pad adipocytes were roundish and with a smaller area, perimeter, and major axis than that of the infrapatellar fat pad. The collagen fibers surrounding them showed no significant difference in collagen type I and significantly higher values for collagen type III in the infrapatellar fat pad group. Regarding the septa, elastic fiber content was statistically comparable between the two groups, even though more represented by the suprapatellar fat pad. Total collagen was significantly higher in the infrapatellar fat pad and comparing collagen type I and type III they were similarly represented in the whole cohort despite collagen type I appearing to be higher in the infrapatellar fat pad than in the suprapatellar fat pad and vice versa for collagen type III. Second harmonic generation microscopy confirmed through coherency calculation an anisotropic distribution of septa collagen fibers. From a mechanical point of view, the different morphological characteristics determined a major stiffness for the infrapatellar fat pad with respect to the suprapatellar fat pad. This study provides, for the first time, a topographic description of the suprapatellar fat pad compared to the infrapatellar fat pad; differences between the two groups may be attributed to a different anatomical location within the knee; the results gathered here may be useful for a more complete interpretation of osteoarthritis disease, involving not only cartilage but the whole joint.
Collapse
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
- Department of Cardiac, Thoracic and Vascular Science and Public HealthUniversity of PadovaPaduaItaly
| | - Martina Contran
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| | - Chiara Giulia Fontanella
- Department of Industrial EngineeringUniversity of PadovaPaduaItaly
- Centre for Mechanics of Biological MaterialsUniversity of PadovaPaduaItaly
| | - Lucia Petrelli
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| | - Ilaria Toniolo
- Department of Industrial EngineeringUniversity of PadovaPaduaItaly
| | - Aron Emmi
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| | - Filippo Romanato
- Department of Physics and Astronomy ‘G. Galilei’University of PadovaPaduaItaly
| | - Andrea Porzionato
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| | - Raffaele De Caro
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| | - Veronica Macchi
- Section of Human Anatomy, Department of NeurosciencesUniversity of PadovaPaduaItaly
| |
Collapse
|
11
|
Stocco E, Barbon S, Faccio D, Petrelli L, Incendi D, Zamuner A, De Rose E, Confalonieri M, Tolomei F, Todros S, Tiengo C, Macchi V, Dettin M, De Caro R, Porzionato A. Development and preclinical evaluation of bioactive nerve conduits for peripheral nerve regeneration: A comparative study. Mater Today Bio 2023; 22:100761. [PMID: 37600351 PMCID: PMC10433238 DOI: 10.1016/j.mtbio.2023.100761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
In severe peripheral nerve injuries, nerve conduits (NCs) are good alternatives to autografts/allografts; however, the results the available devices guarantee for are still not fully satisfactory. Herein, differently bioactivated NCs based on the new polymer oxidized polyvinyl alcohol (OxPVA) are compared in a rat model of sciatic nerve neurotmesis (gap: 5 mm; end point: 6 weeks). Thirty Sprague Dawley rats are randomized to 6 groups: Reverse Autograft (RA); Reaxon®; OxPVA; OxPVA + EAK (self-assembling peptide, mechanical incorporation); OxPVA + EAK-YIGSR (mechanical incorporation); OxPVA + Nerve Growth Factor (NGF) (adsorption). Preliminarily, all OxPVA-based devices are comparable with Reaxon® in Sciatic Functional Index score and gait analysis; moreover, all conduits sustain nerve regeneration (S100, β-tubulin) without showing substantial inflammation (CD3, F4/80) evidences. Following morphometric analyses, OxPVA confirms its potential in PNI repair (comparable with Reaxon®) whereas OxPVA + EAK-YIGSR stands out for its myelinated axons total number and density, revealing promising in injury recovery and for future application in clinical practice.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Diego Faccio
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Damiana Incendi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Annj Zamuner
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Civil, Environmental and Architectural Engineering University of Padova, Via Francesco Marzolo 9, 35131, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Enrico De Rose
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Marta Confalonieri
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Francesco Tolomei
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Cesare Tiengo
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Monica Dettin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
12
|
Emmi A, Stocco E, Boscolo-Berto R, Contran M, Belluzzi E, Favero M, Ramonda R, Porzionato A, Ruggieri P, De Caro R, Macchi V. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front Cell Dev Biol 2022; 10:886604. [PMID: 35837327 PMCID: PMC9274201 DOI: 10.3389/fcell.2022.886604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Infrapatellar Fat Pad (IFP) is a fibro-adipose tissue of the knee recently reconsidered as part of a single anatomo-functional unit (AFU) together with the synovial membrane (SM). Several evidence support the role of this unit in the mechanisms that trigger and perpetuate the onset and progression of osteoarthritis (OA) disease. Additionally, the contribution of IFP-SM AFU in OA-associated pain has also been supposed, but this assumption still needs to be fully elucidated. Within this context, the recent discovery of the mechanoceptive Piezo ion channels (i.e., Piezo1 and Piezo2) in mammals and consciousness on their role in mediating both mechanoceptive and inflammatory stimuli could shed some light on knee OA pain, as well as on the process leading from acute to chronic nociceptive responses. For this purpose, the IFP-SM AFUs of both healthy donors (non-OA IFP-SM AFUs, n = 10) and OA patients (OA IFP-SM AFUs, n = 10) were processed by histology and immunohistochemistry. After the attribution of a histopathological score to IFP-SM AFUs to confirm intrinsic differences between the two groups, the specimens were investigated for the expression and localization/distribution pattern of the mechanosensors Piezo1 and Piezo2. In addition, the presence of monocytes/macrophages (CD68), peripheral nerve endings (PGP9.5) and neoangiogenesis signs (YAP1) was evaluated for a broad tissue characterization. The study results lead to a better description of the IFP-SM AFU microscopic features in both healthy and pathological conditions, highlighting peculiar differences in the study cohort. Specifically, immunopositivity towards Piezo1/2, CD68 and YAP1 markers was detected at vessels level in the OA- IFP-SM AFUs compartments, differently from the non-OA-group. A correlation with pain was also inferred, paving the way for the identification of new and effective molecules in OA management.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Martina Contran
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
- Internal Medicine I, Cà Foncello Hospital, Treviso, Italy
| | - Roberta Ramonda
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- *Correspondence: Raffaele De Caro,
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Exploring Anatomo-Morphometric Characteristics of Infrapatellar, Suprapatellar Fat Pad, and Knee Ligaments in Osteoarthritis Compared to Post-Traumatic Lesions. Biomedicines 2022; 10:biomedicines10061369. [PMID: 35740391 PMCID: PMC9220326 DOI: 10.3390/biomedicines10061369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Several studies have investigated cartilage degeneration and inflammatory subchondral bone and synovial membrane changes using magnetic resonance (MR) in osteoarthritis (OA) patients. Conversely, there is a paucity of data exploring the role of knee ligaments, infrapatellar fat pad (IFP), and suprapatellar fat pad (SFP) in knee OA compared to post-traumatic cohorts of patients. Therefore, the aim of this study was to analyze the volumetric and morphometric characteristics of the following joint tissues: IFP (volume, surface, depth, femoral and tibial arch lengths), SFP (volume, surface, oblique, antero−posterior, and cranio−caudal lengths), anterior (ACL) and posterior cruciate ligament (PCL) (volume, surface, and length), and patellar ligament (PL) (volume, surface, arc, depth, and length). Eighty-nine MR images were collected in the following three groups: (a) 32 patients with meniscal tears, (b) 29 patients with ACL rupture (ACLR), and (c) 28 patients affected by end-stage OA. Volume, surface, and length of both ACL and PCL were determined in groups a and c. A statistical decrease of IFP volume, surface, depth, femoral and tibial arch lengths was found in end-stage OA compared to patients with meniscal tear (p = 0.002, p = 0.008, p < 0.0001, p = 0.028 and p < 0.001, respectively) and patients with ACLR (p < 0.0001, p < 0.0001, p = 0.008 and p = 0.011, respectively). An increment of volume and surface SFP was observed in group b compared to both groups a and c, while no differences were found in oblique, antero−posterior, and cranio−caudal lengths of SFP among the groups. No statistical differences were highlighted comparing volume, surface, arc, and length of PL between the groups, while PL depth was observed to be decreased in end-OA patients compared with meniscal tear patients (p = 0.023). No statistical differences were observed comparing ACL and PCL lengths between patients undergoing meniscectomy and TKR. Our study confirms that IFP MR morphometric characteristics are different between controls and OA, supporting an important role of IFP in OA pathology and progression in accordance with previously published studies. In addition, PL depth changes seem to be associated with OA pathology. Multivariate analysis confirmed that OA patients had a smaller IFP compared to patients with meniscal tears, confirming its involvement in OA.
Collapse
|
14
|
Braun S, Zaucke F, Brenneis M, Rapp AE, Pollinger P, Sohn R, Jenei-Lanzl Z, Meurer A. The Corpus Adiposum Infrapatellare (Hoffa's Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines 2022; 10:1071. [PMID: 35625808 PMCID: PMC9138316 DOI: 10.3390/biomedicines10051071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.
Collapse
Affiliation(s)
- Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Patrizia Pollinger
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| |
Collapse
|
15
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
16
|
Fontanella CG, Belluzzi E, Pozzuoli A, Favero M, Ruggieri P, Macchi V, Carniel EL. Mechanical behavior of infrapatellar fat pad of patients affected by osteoarthritis. J Biomech 2021; 131:110931. [PMID: 34972018 DOI: 10.1016/j.jbiomech.2021.110931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 12/19/2021] [Indexed: 01/14/2023]
Abstract
The infrapatellar fat pad (IFP) is an adipose tissue present in the knee that lies between the patella, femur, meniscus and tibia, filling the space between these structures. IFP facilitates the distribution of the synovial fluid and may act to absorb impulsive actions generated through the joint. IFP in osteoarthritis (OA) pathology undergoes structural changes characterized by inflammation, hypertrophy and fibrosis. The aim of the present study is to analyze the mechanical behavior of the IFP in patients affected by end-stage OA. A specific test fixture was designed and indentation tests were performed on IFP specimens harvested from OA patients who underwent total knee arthroplasty. Experiments allowed to assess the typical features of mechanical response, such as non-linear stress-strain behavior and time-dependent effects. Results from mechanical experimentations were implemented within the framework of a visco-hyperelastic constitutive theory, with the aim to provide data for computational modelling of OA IFP role in knee mechanics. Initial and final indentation stiffness were calculated for all subjects and statistical results reveled that OA IFP mechanics was not significantly influenced by gender, BMI and sample preparation. OA IFP mechanical behavior was also compared to that of other adipose tissues. OA IFP appeared to be a stiffer adipose tissue compared to subcutaneous, visceral adipose tissues and heel fat pads. It is reasonable that fibrosis induces a modification of the tissue destabilizing the normal distribution of forces in the joint during movement, causing a worsening of the disease.
Collapse
Affiliation(s)
- Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy.
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University-Hospital of Padova, 35128 Padova, Italy; Internal Medicine I, Cà Foncello Hospital, 31100 Treviso, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Veronica Macchi
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy; Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy
| |
Collapse
|