1
|
Petre I, Negru S, Dragomir R, Bordianu A, Petre I, Marc L, Vlad DC. Artificial Intelligence Algorithms in Predictive Factors for Hematologic Toxicities During Concurrent Chemoradiation for Cervical Cancer. Cureus 2024; 16:e70665. [PMID: 39493069 PMCID: PMC11528638 DOI: 10.7759/cureus.70665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
The most recent research conducted for the International Federation of Gynecology and Obstetrics indicates that, depending on the stage of cervical cancer (CC), several therapies can provide similar overall survival and progression-free survival rates. To determine the hematologic toxicities during concurrent chemotherapy for cervical cancer, we evaluated these two therapies (cisplatin or carboplatin). Hematologic markers have been studied using statistical models and descriptive statistics. Artificial intelligence models were built using the treatment data and all the information gathered from each patient after one or more administrations to forecast the CC stage. The information was gathered from stage III cervical cancer patients and provided by Oncohelp Hospital from the West Region of Romania. Many traditional machine learning techniques, such as naïve Bayes (NB), random forest (RF), decision trees (DTs), and a trained transformer called TabPFN, were used in the current study to obtain the tabular data. The algorithms NB, RF, and DTs yielded the greatest classification score of 100% when it came to cervical cancer prediction. On the other hand, TabPFN demonstrated an accuracy of 88%. The effectiveness of the models was evaluated by computing the computational complexity of traditional machine learning methods. Early detection increases the likelihood of a good prognosis during the precancerous and malignant stages. Being aware of any indications and symptoms of cervical cancer can also help to prevent delays in diagnosis. These hematologic toxicities, which have been demonstrated to grow linearly with lowering hematologic markers below their normal expectations, would significantly impair patients' quality of life.
Collapse
Affiliation(s)
- Ion Petre
- Department of Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
- Department of Functional Science, Medical Informatics and Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Serban Negru
- Department of Medical Oncology, Oncohelp Oncology Center, Timisoara, ROU
- Department of Oncology, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Radu Dragomir
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Anca Bordianu
- Department of Plastic and Reconstructive, Bagdasar-Arseni Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Izabella Petre
- Department of Obstetrics and Gynecology, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
- Department of Obstetrics and Gynecology, Pius Brinzeu Emergency County Clinical Hospital, Timisoara, ROU
| | - Luciana Marc
- Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
| | - Daliborca Cristina Vlad
- Department of Pharmacology, Victor Babes University of Medicine and Pharmacy, Timisoara, ROU
- Department of Laboratory Medicine, Pius Brinzeu Emergency County Clinical Hospital, Timisoara, ROU
| |
Collapse
|
2
|
Lee CY, Chen PN, Kao SH, Wu HH, Hsiao YH, Huang TY, Wang PH, Yang SF. Deoxyshikonin triggers apoptosis in cervical cancer cells through p38 MAPK-mediated caspase activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4308-4317. [PMID: 38717057 DOI: 10.1002/tox.24323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 08/09/2024]
Abstract
Deoxyshikonin (DSK) is a biological component derived from Lithospermum erythrorhizon. Although DSK possesses potential anticancer activities, whether DSK exerts anticancer effects on cervical cancer cells is incompletely explored. This study was aimed to investigate the anticancer activity of DSK against cervical cancer cells and its molecular mechanisms. Cell viability was evaluated by MTT assay. Level of phosphorylation and protein was determined using Western blot. Involvement of signaling kinases was assessed by specific inhibitors. Our results revealed that DSK reduced viability of human cervical cell in a dose-dependent fashion. Meanwhile, DSK significantly elicited apoptosis of HeLa and SiHa cells. Apoptosis microarray was used to elucidate the involved pathways, and the results showed that DSK dose-dependently diminished cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, and XIAP, and induced cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8/9/3. Furthermore, we observed that DSK significantly triggered activation of ERK, JNK, and p38 MAPK (p38), and only inhibition of p38 diminished the DSK-mediated pro-caspases cleavage. Taken together, our results demonstrate that DSK has anti-cervical cancer effects via the apoptotic cascade elicited by downregulation of IAPs and p38-mediated caspase activation. This suggests that DSK could act as an adjuvant to facilitate cervical cancer management.
Collapse
Affiliation(s)
- Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzu-Yu Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Zukić S, Osmanović A, Harej Hrkać A, Kraljević Pavelić S, Špirtović-Halilović S, Veljović E, Roca S, Trifunović S, Završnik D, Maran U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. Int J Mol Sci 2024; 25:9390. [PMID: 39273338 PMCID: PMC11395534 DOI: 10.3390/ijms25179390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization and predictive capabilities in the search for new active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were collected and curated. A workflow was developed for data-driven machine learning QSAR using an intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly externally validated against available data. Blind validation was also performed by synthesis and antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted with the QSAR model with differences of 0.02 compared to experimentally tested activity.
Collapse
Affiliation(s)
- Selma Zukić
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | | | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Veljović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička Street 54, 10000 Zagreb, Croatia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Davorka Završnik
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Sisin NNT, Kong AR, Edinur HA, Jamil NIN, Che Mat NF. Silencing E6/E7 Oncoproteins in SiHa Cells Treated with siRNAs and Oroxylum indicum Extracts Induced Apoptosis by Upregulating p53/pRb Pathways. Appl Biochem Biotechnol 2024; 196:4234-4255. [PMID: 37922032 DOI: 10.1007/s12010-023-04762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
E6 and E7 human papillomavirus (HPV) oncoproteins play a significant role in the malignant transformation of infected cervical cancer cells via suppression of tumour suppressor pathways by targeting p53 and pRb, respectively. This study aimed to investigate the anticancer effects of Oroxylum indicum (OI) leaves' methanol extract on SiHa cervical cancer cells. Expression of apoptosis-related proteins (Bcl-2, caspase (cas)-3, and cas-9), viral oncoproteins (E6 and E7), and tumour suppressor proteins (p53 and pRb) were evaluated using western blot analysis before and after E6/E7 small interfering RNAs (siRNAs) transfection. In addition, the E6/E7 mRNA expression levels were assessed with real-time (RT)-PCR. The present study showed that the OI extract effectively hindered the proliferation of SiHa cells and instigated increments of cas-3 and cas-9 expressions but decreased the Bcl-2 expressions. The OI extract inhibited E6/E7 viral oncoproteins, leading to upregulation of p53 and pRb tumour suppressor genes in SiHa cells. Additionally, combinatorial treatment of OI extract and gossypin flavonoid induced restorations of p53 and pRb. Treatment with OI extract in siRNA-transfected cells also further suppressed E6/E7 expression levels and further upregulations of p53 and pRb proteins. In conclusion, OI extract treatment on siRNAs-transfected SiHa cells can additively and effectively block E6- and E7-dependent p53 and pRb degradations. All these data suggest that OI could be explored for its chemotherapeutic potential in cervical cancer cells with HPV-integrated genomes.
Collapse
Affiliation(s)
| | - Aaron Raphael Kong
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Noor Izani Noor Jamil
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
5
|
Hiba IH, Koh JK, Lai CW, Mousavi SM, Badruddin IA, Hussien M, Wong JP. Polyrhodanine-based nanomaterials for biomedical applications: A review. Heliyon 2024; 10:e28902. [PMID: 38633652 PMCID: PMC11021909 DOI: 10.1016/j.heliyon.2024.e28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.
Collapse
Affiliation(s)
- Ibrahim Huzyan Hiba
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Jin Kwei Koh
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Jest Phia Wong
- Harper Elite Sdn Bhd, UG-23, PJ Midtown, Jalan Kemajuan, Seksyen 13, 46200, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Ralte L, Sailo H, Kumar R, Khiangte L, Kumar NS, Singh YT. Identification of novel AKT1 inhibitors from Sapria himalayana bioactive compounds using structure-based virtual screening and molecular dynamics simulations. BMC Complement Med Ther 2024; 24:116. [PMID: 38454426 PMCID: PMC10921764 DOI: 10.1186/s12906-024-04415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Through the experimental and computational analyses, the present study sought to elucidate the chemical composition and anticancer potential of Sapria himalayana plant extract (SHPE). An in vitro analysis of the plant extract was carried out to determine the anticancer potential. Further, network pharmacology, molecular docking, and molecular dynamic simulation were employed to evaluate the potential phytochemical compounds for cervical cancer (CC) drug formulations. The SHPE exhibited anti-cancerous potential through inhibition properties against cancer cell lines. The LC-MS profiling showed the presence of 14 compounds in SHPE. Using network pharmacology analysis, AKT1 (AKT serine/threonine kinase 1) is identified as the possible potential target, and EGFR (Epidermal Growth Factor Receptor) is identified as the possible key signal pathway. The major targets were determined to be AKT1, EGFR by topological analysis and molecular docking. An in silico interaction of phytoconstituents employing molecular docking demonstrated a high binding inclination of ergoloid mesylate and Ergosta-5,7,9(11),22-tetraen-3-ol, (3.beta.,22E)- with binding affinities of -15.5 kcal/mol, and -11.3 kcal/mol respectively. Further, MD simulation and PCA analyses showed that the phytochemicals possessed significant binding efficacy with CC protein. These results point the way for more investigation into SHPE compound's potential as CC treatment.
Collapse
Affiliation(s)
- Laldinfeli Ralte
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Hmingremhlua Sailo
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Rakesh Kumar
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | | | - Yengkhom Tunginba Singh
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India.
- Department of Life Sciences (Botany), Manipur University, Imphal, Manipur, 795003, India.
| |
Collapse
|
7
|
Koralahalli KP, Hussain S, Devarajan DW, Siddikuzzaman, Mariammal BGV. Molecular Actions of Enicostemma hyssopifolium Whole Plant Extract on HPV18-Infected Human Cervical Cancer (HeLa) Cells. Anticancer Agents Med Chem 2024; 24:1253-1263. [PMID: 38982697 DOI: 10.2174/0118715206296375240703115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 μg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 μg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 μg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 μg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 μg/mL of extract (tail moments-19.536 ± 17.8), while 80 μg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 μg/mL of extract, while 80 μg/mL did not show a significant reduction. CONCLUSION The 160 μg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.
Collapse
Affiliation(s)
| | - Sardar Hussain
- Department of Biotechnology, Maharani`s Science College for Women, 570005, Mysore, India
| | - David Wilson Devarajan
- School of Science, Arts and Media, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India
| | - Siddikuzzaman
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India
| | | |
Collapse
|
8
|
Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL. Essential Oils in Cervical Cancer: Narrative Review on Current Insights and Future Prospects. Antioxidants (Basel) 2023; 12:2109. [PMID: 38136228 PMCID: PMC10740549 DOI: 10.3390/antiox12122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Nor Haliza Mohamad Najib
- Unit of Anatomy, Faculty Medicine & Health Defence, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
9
|
Ye M, Liu T, Miao L, Zou S, Ji H, Zhang J, Zhu X. The Role of ZNF275/AKT Pathway in Carcinogenesis and Cisplatin Chemosensitivity of Cervical Cancer Using Patient-Derived Xenograft Models. Cancers (Basel) 2023; 15:5625. [PMID: 38067329 PMCID: PMC10705782 DOI: 10.3390/cancers15235625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 07/04/2024] Open
Abstract
Zinc finger protein 275 (ZNF275) is a C2H2-type transcription factor that is localized on chromosome Xq28. Whether ZNF275 participates in modulating the biological behaviors of cervical cancer has not been determined to our knowledge. The present study employed CCK-8, BrdU, flow cytometry, and a transwell assay to investigate the cell viability, proliferation, apoptosis, migration, and invasion of cervical cancer cells. The application of Western blotting and immunohistochemistry (IHC) aims to assess ZNF275 protein expression and identify the signaling pathway relevant to ZNF275-mediated effects on cervical cancer. The therapeutic impact of the combined therapy of the AKT inhibitor triciribine and cisplatin was evaluated on cervical cancer patient-derived xenograft (PDX) models expressing high ZNF275. The current research illustrated that cervical cancer tissue exhibited a higher expression of ZNF275 in contrast to the surrounding normal cervical tissue. The downregulation of ZNF275 suppressed cell viability, migration, and invasion, and facilitated the apoptosis of SiHa and HeLa cells via weakening AKT/Bcl-2 signaling pathway. Moreover, triciribine synergized with cisplatin to reduce cell proliferation, migration, and invasion, and enhanced the apoptosis of SiHa cells expressing high ZNF275. In addition, the combination treatment of triciribine and cisplatin was more effective in inducing tumor regression than single agents in cervical cancer PDX models expressing high ZNF275. Collectively, the current findings demonstrated that ZNF275 serves as a sufficiently predictive indicator of the therapeutic effectiveness of the combined treatment of triciribine and cisplatin on cervical cancer. Combining triciribine with cisplatin greatly broadens the therapeutic options for cervical cancer expressing high ZNF275, but further research is needed to confirm these results.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian’an Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; (M.Y.)
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; (M.Y.)
| |
Collapse
|
10
|
Ahmed F, Yang YJ, Samantasinghar A, Kim YW, Ko JB, Choi KH. Network-based drug repurposing for HPV-associated cervical cancer. Comput Struct Biotechnol J 2023; 21:5186-5200. [PMID: 37920815 PMCID: PMC10618120 DOI: 10.1016/j.csbj.2023.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
In women, cervical cancer (CC) is the fourth most common cancer around the world with average cases of 604,000 and 342,000 deaths per year. Approximately 50% of high-grade CC are attributed to human papillomavirus (HPV) types 16 and 18. Chances of CC in HPV-positive patients are 6 times more than HPV-negative patients which demands timely and effective treatment. Repurposing of drugs is considered a viable approach to drug discovery which makes use of existing drugs, thus potentially reducing the time and costs associated with de-novo drug discovery. In this study, we present an integrative drug repurposing framework based on a systems biology-enabled network medicine platform. First, we built an HPV-induced CC protein interaction network named HPV2C following the CC signatures defined by the omics dataset, obtained from GEO database. Second, the drug target interaction (DTI) data obtained from DrugBank, and related databases was used to model the DTI network followed by drug target network proximity analysis of HPV-host associated key targets and DTIs in the human protein interactome. This analysis identified 142 potential anti-HPV repurposable drugs to target HPV induced CC pathways. Third, as per the literature survey 51 of the predicted drugs are already used for CC and 33 of the remaining drugs have anti-viral activity. Gene set enrichment analysis of potential drugs in drug-gene signatures and in HPV-induced CC-specific transcriptomic data in human cell lines additionally validated the predictions. Finally, 13 drug combinations were found using a network based on overlapping exposure. To summarize, the study provides effective network-based technique to quickly identify suitable repurposable drugs and drug combinations that target HPV-associated CC.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, South Korea
| | - Young Jin Yang
- Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, South Korea
| | | | - Young Woo Kim
- Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, South Korea
| | - Jeong Beom Ko
- Korea Institute of Industrial Technology, 102 Jejudaehak-ro, Jeju-si 63243, South Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, South Korea
| |
Collapse
|
11
|
Kedia M, Khatun S, Phukon U, Shankar B, Rengan AK, Sathiyendiran M. Trinuclear rhenium(I)-based metallocages as anticancer agents towards human cervical cancer cells. Dalton Trans 2023; 52:14314-14318. [PMID: 37789813 DOI: 10.1039/d3dt02535g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The first examples of spherical-shaped trinuclear rhenium(I) organometallic cages displaying cytotoxic, antimetastatic, antiproliferative and DNA-damaging behavior towards a human cervical (HeLa) cancer cell line are reported. The compact design of the metallocages facilitates their interactions with biosystems leading to comparable efficiency to that of the commonly used anticancer drug cisplatin.
Collapse
Affiliation(s)
- Moon Kedia
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Kandi, Hyderabad-502 284, India.
| | - Upasana Phukon
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai-625 015, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Kandi, Hyderabad-502 284, India.
| | | |
Collapse
|
12
|
Ksirri R, Bhanukiran K, Maity S, Maiti P, Hemalatha S. Evaluation of anticancer activity of Gmelina asiatica leaves, in-vitro and in-silico studies. J Biomol Struct Dyn 2023; 42:11690-11705. [PMID: 37787618 DOI: 10.1080/07391102.2023.2263894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Cervical cancer poses a major threat to women's health worldwide, constituting the fourth most prevalent cancer among the female population. High-risk variants of human papillomavirus (HPV) with its oncogenic proteins are a necessary cause of cervical cancer. Due to the resistance of cancer cells to the current treatment, there is a need for new medicines with new strategies to treat cervical cancer. Gmelina asiatica Linn. is a medicinal plant with various traditional uses and biological activities. Its anticancer potential against breast cancer and lymphoma has been demonstrated in the literature. In view of this, our study aims to investigate the anticancer activity of Gmelina asiatica leaves against cervical cancer. Various extracts of Gmelina asiatica leaves were prepared by soxhletation and maceration methods. The cytotoxic activity of the extracts was evaluated through in-vitro studies against SiHa cell line using MTT assay and fluorescence imaging. The most potent extract (GAME) phytochemical profile was analysed by UHPLC-HRMS. Further, in-silico studies were performed on its phytoconstituents against E6 oncoprotein, and the DFT studies were conducted on the active component to assess the physicochemical properties. In-vitro studies revealed that methanolic extract (GAME) showed the highest inhibition on the SiHa cell line compared to the other extracts and the control (p < 0.0001). In-silico studies indicated high affinity with stable interaction of the compound 5 (JC5ABDR) at E6 binding sites. This study revealed the importance of Gmelina asiatica plant as a potential source of anticancer molecules with a specific mode of action against cervical cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rasha Ksirri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Swapan Maity
- School of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pralay Maiti
- School of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
13
|
Karpel HC, Powell SS, Pothuri B. Antibody-Drug Conjugates in Gynecologic Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e390772. [PMID: 37229642 DOI: 10.1200/edbk_390772] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The present article reviews the current evidence for antibody-drug conjugates (ADCs) in gynecologic cancer. ADCs consist of a highly selective monoclonal antibody for a tumor-associated antigen and a potent cytotoxic payload conjugated through a linker. Overall, the toxicity profiles of ADCs are manageable. Ocular toxicity is a known class effect of some ADCs and is managed with prophylactic corticosteroid and vasoconstrictor eye drops as well as dose interruptions/holds and dose modifications. In ovarian cancer, mirvetuximab soravtansine, an ADC targeting alpha-folate receptor (FRα), received US Food and Drug Administration (FDA) accelerated approval in November 2022 after data from the single-arm phase III SORAYA trial. A second ADC targeting FRα, STRO-002, received FDA fast track designation in August 2021. Multiple studies with upifitamab rilsodotin, an ADC comprising a NaPi2B-binding antibody, are underway. In cervical cancer, tisotumab vedotin, an ADC-targeting tissue factor, received FDA accelerated approval in September 2021 after the phase II innovaTV 204 trial. Tisotumab vedotin in combination with chemotherapy and other targeted agents is currently being evaluated. Although there are no currently approved ADCs for endometrial cancer, there are many under active evaluation, including mirvetuximab soravtansine. Trastuzumab-deruxtecan (T-DXd), an ADC targeting human epidermal growth factor receptor 2 (HER2), is currently approved for HER2-positive and HER2-low breast cancer and shows promise in endometrial cancer. Like all anticancer treatments, the decision for a patient to undergo therapy with an ADC is a personal choice that balances the potential benefits with the side effects and requires thorough and compassionate support of their physician and care team and shared decision making.
Collapse
Affiliation(s)
- Hannah C Karpel
- New York University Grossman School of Medicine, New York, NY
| | | | | |
Collapse
|
14
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Detection of Complement C1q B Chain Overexpression and Its Latent Molecular Mechanisms in Cervical Cancer Tissues Using Multiple Methods. Int J Genomics 2022; 2022:8775330. [PMID: 36313902 PMCID: PMC9613392 DOI: 10.1155/2022/8775330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Aim The aim of this study is to demonstrate the expression and clinicopathological significance of complement C1q B chain (C1QB) in cervical cancer. Methods In total, 120 cervical cancer tissues, as well as 20 samples each of high-grade squamous intraepithelial lesions (HSILs), low-grade squamous intraepithelial lesions (LSILs), and benign cervical tissue, were collected to evaluate the expression of C1QB protein via immunohistochemical staining. We conducted an integrated analysis of C1QB mRNA expression in cervical cancer using public microarrays and RNA-seq data sets by calculating standard mean differences (SMDs). Simultaneously, we explored the relations of C1QB with clinicopathological parameters and the expression of P16, Ki-67, and P53. Results The expression of C1QB protein was higher in cervical cancer samples than that in benign cervical tissue, LSIL, and HSIL samples (p < 0.05). A combined SMD of 0.65 (95% CI: [0.52, 0.79], p < 0.001) revealed upregulation of C1QB mRNA in cervical cancer. C1QB expression may also be related to the depth of infiltration, lymphovascular invasion, and perineural invasion in cervical cancer (p < 0.05). We also found that C1QB protein expression was positively correlated with P16 and Ki-67 expression in cervical cancer (p < 0.05). The gene set enrichment analysis showed that C1QB may participate in apoptosis and autophagy. A relationship was predicted between C1QB expression and drug sensitivity to cisplatin, paclitaxel, and docetaxel. Conclusion We confirmed the overexpression of C1QB in cervical cancer at both mRNA and protein levels for the first time. C1QB may serve as an oncogene in the tumorigenesis of cervical cancer, but this possibility requires further study.
Collapse
|
16
|
Arip M, Tan LF, Jayaraj R, Abdullah M, Rajagopal M, Selvaraja M. Exploration of biomarkers for the diagnosis, treatment and prognosis of cervical cancer: a review. Discov Oncol 2022; 13:91. [PMID: 36152065 PMCID: PMC9509511 DOI: 10.1007/s12672-022-00551-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
As the fourth most diagnosed cancer, cervical cancer (CC) is one of the major causes of cancer-related mortality affecting females globally, particularly when diagnosed at advanced stage. Discoveries of CC biomarkers pave the road to precision medicine for better patient outcomes. High throughput omics technologies, characterized by big data production further accelerate the process. To date, various CC biomarkers have been discovered through the advancement in technologies. Despite, very few have successfully translated into clinical practice due to the paucity of validation through large scale clinical studies. While vast amounts of data are generated by the omics technologies, challenges arise in identifying the clinically relevant data for translational research as analyses of single-level omics approaches rarely provide causal relations. Integrative multi-omics approaches across different levels of cellular function enable better comprehension of the fundamental biology of CC by highlighting the interrelationships of the involved biomolecules and their function, aiding in identification of novel integrated biomarker profile for precision medicine. Establishment of a worldwide Early Detection Research Network (EDRN) system helps accelerating the pace of biomarker translation. To fill the research gap, we review the recent research progress on CC biomarker development from the application of high throughput omics technologies with sections covering genomics, transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Masita Arip
- Allergy & Immunology Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Rama Jayaraj
- Charles Darwin University, Darwin, NT, 0909, Australia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Serdang, 43400, Serdang, Selangor, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Ramón AC, Basukala O, Massimi P, Thomas M, Perera Y, Banks L, Perea SE. CIGB-300 Peptide Targets the CK2 Phospho-Acceptor Domain on Human Papillomavirus E7 and Disrupts the Retinoblastoma (RB) Complex in Cervical Cancer Cells. Viruses 2022; 14:v14081681. [PMID: 36016303 PMCID: PMC9414295 DOI: 10.3390/v14081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
CIGB-300 is a clinical-grade anti-Protein Kinase CK2 peptide, binding both its substrate’s phospho-acceptor site and the CK2α catalytic subunit. The cyclic p15 inhibitory domain of CIGB-300 was initially selected in a phage display library screen for its ability to bind the CK2 phospho-acceptor domain ofHPV-16 E7. However, the actual role of this targeting in CIGB-300 antitumoral mechanism remains unexplored. Here, we investigated the physical interaction of CIGB-300 with HPV-E7 and its impact on CK2-mediated phosphorylation. Hence, we studied the relevance of targeting E7 phosphorylation for the cytotoxic effect induced by CIGB-300. Finally, co-immunoprecipitation experiments followed by western blotting were performed to study the impact of the peptide on the E7–pRB interaction. Interestingly, we found a clear binding of CIGB-300 to the N terminal region of E7 proteins of the HPV-16 type. Accordingly, the in vivo physical interaction of the peptide with HPV-16 E7 reduced CK2-mediated phosphorylation of E7, as well as its binding to the tumor suppressor pRB. However, the targeting of E7 phosphorylation by CIGB-300 seemed to be dispensable for the induction of cell death in HPV-18 cervical cancer-derived C4-1 cells. These findings unveil novel molecular clues to the means by which CIGB-300 triggers cell death in cervical cancer cells.
Collapse
Affiliation(s)
- Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
| | - Om Basukala
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Paola Massimi
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Miranda Thomas
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Lengshuitan District, Yongzhou 425000, China
| | - Lawrence. Banks
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
- Correspondence: (L.B.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- Correspondence: (L.B.); (S.E.P.)
| |
Collapse
|
18
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. Cancer Stem Cells and Their Possible Implications in Cervical Cancer: A Short Review. Int J Mol Sci 2022; 23:ijms23095167. [PMID: 35563557 PMCID: PMC9106065 DOI: 10.3390/ijms23095167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is the fourth most common type of gynecological malignancy affecting females worldwide. Most CC cases are linked to infection with high-risk human papillomaviruses (HPV). There has been a significant decrease in the incidence and death rate of CC due to effective cervical Pap smear screening and administration of vaccines. However, this is not equally available throughout different societies. The prognosis of patients with advanced or recurrent CC is particularly poor, with a one-year relative survival rate of a maximum of 20%. Increasing evidence suggests that cancer stem cells (CSCs) may play an important role in CC tumorigenesis, metastasis, relapse, and chemo/radio-resistance, thus representing potential targets for a better therapeutic outcome. CSCs are a small subpopulation of tumor cells with self-renewing ability, which can differentiate into heterogeneous tumor cell types, thus creating a progeny of cells constituting the bulk of tumors. Since cervical CSCs (CCSC) are difficult to identify, this has led to the search for different markers (e.g., ABCG2, ITGA6 (CD49f), PROM1 (CD133), KRT17 (CK17), MSI1, POU5F1 (OCT4), and SOX2). Promising therapeutic strategies targeting CSC-signaling pathways and the CSC niche are currently under development. Here, we provide an overview of CC and CCSCs, describing the phenotypes of CCSCs and the potential of targeting CCSCs in the management of CC.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe DeGennaro”, 70010 Casamassima, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.)
| |
Collapse
|
19
|
Zhou X, Zhao X, Wu Z, Ma Y, Li H. LncRNA FLVCR1-AS1 mediates miR-23a-5p/SLC7A11 axis to promote malignant behavior of cervical cancer cells. Bioengineered 2022; 13:10454-10466. [PMID: 35465835 PMCID: PMC9161883 DOI: 10.1080/21655979.2022.2059958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cervical cancer (CC) is the most common gynecological malignant tumor in the world. Long non-coding RNA (lncRNAs) plays an important role in cell activities of various cancers including CC. This study aims to reveal the biological function of FLVCR1-AS1 in CC and clarify its possible mechanism of action. The findings suggest that the expression of FLVCR1-AS1 was elevated in CC tissues and cell lines, and that high expression of FLVCR1-AS1 was associated with poor prognosis of CC patients. In addition, knockdown of FLVCR1-AS1 could inhibit the proliferation and migration, invasion and epithelial–mesenchymal transformation (EMT) of CC cells, as well as accelerating apoptosis, to inhibit the development of CC. In addition, via the dual-luciferase reporting assay and RIP assay were confirmed that FLVCR1-AS1 acted as a competitive endogenous RNA to inhibit the expression of microRNA (miR)-23a-5p, and miR-23a-5p targeted the 3’-untranslated region site of Solute carrier family 7 member 11 (SLC7A11) and negatively regulated the expression of SLC7A11. Functional rescue experiments showed that miR-23a-5p inhibitors reversed the inhibitory effect of FLVCR1-AS1-silencing on proliferation, EMT, migration and invasion, and the promoting impact of apoptosis of CC cells. In addition, SLC7A11 rescued the effect of miR-23a-5p overexpression on progression of CC cells. In conclusion, FLVCR1-AS1 is involved in the malignant phenotype of CC cells through miR-23a-5p/SLC7A11 axis, which may provide a beneficial direction for the treatment of CC.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Gynecology, The First Affiliated Hospital of University of South China Hengyang, Hengyang City, Hunan Province, China
| | - Xia Zhao
- Department of Gynecology, The First Affiliated Hospital of University of South China Hengyang, Hengyang City, Hunan Province, China
| | - ZhouYi Wu
- Medical School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Yan Ma
- Department of Gynecology, The First Affiliated Hospital of University of South China Hengyang, Hengyang City, Hunan Province, China
| | - Heng Li
- Department of Gynecology, Loudi Central Hospital, Loudi City, Hunan Province, China
| |
Collapse
|
20
|
Lagunas-Martínez A, Madrid-Marina V, Gómez-Cerón C, Deas J, Peralta-Zaragoza O. The Autophagy Process in Cervical Carcinogenesis: Role of Non-Coding-RNAs, Molecular Mechanisms, and Therapeutic Targets. Cells 2022; 11:cells11081323. [PMID: 35456001 PMCID: PMC9028856 DOI: 10.3390/cells11081323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a highly conserved multistep lysosomal degradation process in which cellular components are localized to autophagosomes, which subsequently fuse with lysosomes to degrade the sequestered contents. Autophagy serves to maintain cellular homeostasis. There is a close relationship between autophagy and tumor progression, which provides opportunities for the development of anticancer therapeutics that target the autophagy pathway. In this review, we analyze the effects of human papillomavirus (HPV) E5, E6, and E7 oncoproteins on autophagy processes in cervical cancer development. Inhibition of the expression or the activity of E5, E6, and E7 can induce autophagy in cells expressing HPV oncogenes. Thus, E5, E6, and E7 oncoproteins target autophagy during HPV-associated carcinogenesis. Furthermore, noncoding RNA (ncRNA) expression profiling in cervical cancer has allowed the identification of autophagy-related ncRNAs associated with HPV. Autophagy-related genes are essential drivers of autophagy and are regulated by ncRNAs. We review the existing evidence regarding the role of autophagy-related proteins, the function of HPV E5, E6, and E7 oncoproteins, and the effects of noncoding RNA on autophagy regulation in the setting of cervical carcinogenesis. By characterizing the mechanisms behind the dysregulation of these critical factors and their impact on host cell autophagy, we advance understanding of the relationship between autophagy and progression from HPV infection to cervical cancer, and highlight pathways that can be targeted in preventive and therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Vicente Madrid-Marina
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Claudia Gómez-Cerón
- Research Center in Population Health, Department of Cancer Epidemiology, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico;
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
- Correspondence: ; Tel.: +52-777-3293000
| |
Collapse
|
21
|
Ito Y, Takasawa A, Takasawa K, Murakami T, Akimoto T, Kyuno D, Kawata Y, Shano K, Kirisawa K, Ota M, Aoyama T, Murata M, Sugimoto K, Chiba H, Saito T, Osanai M. Aberrant expression of claudin-6 contributes to malignant potentials and drug resistance of cervical adenocarcinoma. Cancer Sci 2022; 113:1519-1530. [PMID: 35100472 PMCID: PMC8990859 DOI: 10.1111/cas.15284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies have revealed that aberrant expression of tight junction (TJ) proteins is a hallmark of various solid tumors and it is recognized as a useful therapeutic target. Claudin‐6 (CLDN6), a member of the family of TJ transmembrane proteins, is an ideal therapeutic target because it is not expressed in human adult normal tissues. In this study, we found that CLDN6 is highly expressed in uterine cervical adenocarcinoma (ADC) and that high CLDN6 expression was correlated with lymph node metastasis and lymphovascular infiltration and was an independent prognostic factor. Shotgun proteome analysis revealed that cell‐cell adhesion‐related proteins and drug metabolism‐associated proteins (aldo‐keto reductase [AKR] family proteins) were significantly increased in CLDN6‐overexpressing cells. Furthermore, overexpression of CLDN6 enhanced cell‐cell adhesion properties and attenuated sensitivity to anticancer drugs including doxorubicin, daunorubicin, and cisplatin. Taken together, the results indicate that aberrant expression of CLDN6 enhances malignant potentials and drug resistance of cervical ADC, possibly due to increased cell‐cell adhesion properties and drug metabolism. Our findings provide an insight into a new therapeutic strategy, a CLDN6‐targeting therapy, against cervical ADC.
Collapse
Affiliation(s)
- Yui Ito
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taro Murakami
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taishi Akimoto
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yuka Kawata
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kodai Shano
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kurara Kirisawa
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Misaki Ota
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Graduate School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Graduate School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
22
|
The non-apoptotic function of Caspase-8 in negatively regulating the CDK9-mediated Ser2 phosphorylation of RNA polymerase II in cervical cancer. Cell Mol Life Sci 2022; 79:597. [PMID: 36399280 PMCID: PMC9674771 DOI: 10.1007/s00018-022-04598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Cervical cancer is the fourth most frequently diagnosed and fatal gynecological cancer. 15-61% of all cases metastasize and develop chemoresistance, reducing the 5-year survival of cervical cancer patients to as low as 17%. Therefore, unraveling the mechanisms contributing to metastasis is critical in developing better-targeted therapies against it. Here, we have identified a novel mechanism where nuclear Caspase-8 directly interacts with and inhibits the activity of CDK9, thereby modulating RNAPII-mediated global transcription, including those of cell-migration- and cell-invasion-associated genes. Crucially, low Caspase-8 expression in cervical cancer patients leads to poor prognosis, higher CDK9 phosphorylation at Thr186, and increased RNAPII activity in cervical cancer cell lines and patient biopsies. Caspase-8 knock-out cells were also more resistant to the small-molecule CDK9 inhibitor BAY1251152 in both 2D- and 3D-culture conditions. Combining BAY1251152 with Cisplatin synergistically overcame chemoresistance of Caspase-8-deficient cervical cancer cells. Therefore, Caspase-8 expression could be a marker in chemoresistant cervical tumors, suggesting CDK9 inhibitor treatment for their sensitization to Cisplatin-based chemotherapy.
Collapse
|