1
|
Ji Y, Xiao Y, Li S, Fan Y, Cai Y, Yang B, Chen H, Hu S. Protective effect and mechanism of Xiaoyu Xiezhuo decoction on ischemia-reperfusion induced acute kidney injury based on gut-kidney crosstalk. Ren Fail 2024; 46:2365982. [PMID: 39010816 DOI: 10.1080/0886022x.2024.2365982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
This study aimed to explore the mechanism of Xiaoyu Xiezhuo decoction (XXD) on ischemia-reperfusion-induced acute kidney injury (IRI-AKI) using network pharmacology methods and gut microbiota analysis. A total of 1778 AKI-related targets were obtained, including 140 targets possibly regulated by AKI in XXD, indicating that the core targets were mainly enriched in inflammatory-related pathways, such as the IL-17 signaling pathway and TNF signaling pathway. The unilateral IRI-AKI animal model was established and randomly divided into four groups: the sham group, the AKI group, the sham + XXD group, and the AKI + XXD group. Compared with the rats in the AKI group, XXD improved not only renal function, urinary enzymes, and biomarkers of renal damage such as Kim-1, cystatin C, and serum inflammatory factors such as IL-17, TNF-α, IL-6, and IL 1-β, but also intestinal metabolites including lipopolysaccharides, d-lactic acid, indoxyl sulfate, p-cresyl sulfate, and short-chain fatty acids. XXD ameliorated renal and colonic pathological injury as well as inflammation and chemokine gene abundance, such as IL-17, TNF-α, IL-6, IL-1β, ICAM-1, and MCP-1, in AKI rats via the TLR4/NF-κB/NLRP3 pathway, reducing the AKI score, renal pathological damage, and improving the intestinal mucosa's inflammatory infiltration. It also repaired markers of the mucosal barrier, including claudin-1, occludin, and ZO-1. Compared with the rats in the AKI group, the α diversity was significantly increased, and the Chao1 index was significantly enhanced after XXD treatment in both the sham group and the AKI group. The treatment group significantly reversed this change in microbiota.
Collapse
Affiliation(s)
- Yue Ji
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yunming Xiao
- Department of Nephrology, Medical School of Chinese PLA, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Shipian Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yihua Fan
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuzi Cai
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| |
Collapse
|
2
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Zhou T, Zhang Y, Li Z, Lu C, Zhao H. Research progress of traditional Chinese medicine on the treatment of diarrhea by regulating intestinal microbiota and its metabolites based on renal-intestinal axis. Front Cell Infect Microbiol 2024; 14:1483550. [PMID: 39397865 PMCID: PMC11466940 DOI: 10.3389/fcimb.2024.1483550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Intestinal microbiota and its metabolites are involved in many physiological processes of the human body and play a vital role in maintaining human health. The occurrence of kidney disease can cause intestinal microbiota imbalance, resulting in diarrhea. The change of intestinal microbiota and its metabolites content can aggravate renal function injury, which has a bidirectional regulating effect. The theory of renal-intestinal axis further clarified that the impaired renal function is related to the imbalance of intestinal microorganisms, and the impaired intestinal barrier is related to the accumulation of toxin products. Because of its unique therapeutic advantages, Traditional Chinese Medicine can treat diarrhea by enhancing the growth of beneficial bacteria, inhibiting pathogenic bacteria and immune regulation, and slow down the continuous deterioration of kidney disease. This paper focuses on the relationship between intestinal microbiota and its metabolites and diarrhea, the influence of Traditional Chinese Medicine on intestinal microbiota in the treatment of diarrhea, and the role of intestinal microbiota and its metabolites in the renal-intestinal axis. It provides a theoretical basis for Traditional Chinese Medicine to regulate intestinal microbiota and its metabolites based on the renal-intestinal axis theory to treat nephrology-induced diarrhea, and also provides a new idea and method for Traitional Chinese Medicine to treat nephrology-induced diarrhea.
Collapse
Affiliation(s)
- Tong Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yifan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhaoyuan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Medical, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
4
|
Wang L, Xu A, Wang J, Fan G, Liu R, Wei L, Pei M. The effect and mechanism of Fushen Granule on gut microbiome in the prevention and treatment of chronic renal failure. Front Cell Infect Microbiol 2024; 13:1334213. [PMID: 38274729 PMCID: PMC10808756 DOI: 10.3389/fcimb.2023.1334213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Background Fushen Granule is an improved granule based on the classic formula Fushen Formula, which is used for the treatment of peritoneal dialysis-related intestinal dysfunction in patients with end-stage renal disease. However, the effect and mechanism of this granule on the prevention and treatment of chronic renal failure have not been fully elucidated. Methods A 5/6 nephrectomy model of CRF was induced and Fushen Granule was administered at low and high doses to observe its effects on renal function, D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The 16SrRNA sequencing method was used to analyze the abundance and structure of the intestinal flora of CRF rats. A FMT assay was also used to evaluate the effects of transplantation of Fushen Granule fecal bacteria on renal-related functional parameters and metabolic toxins in CRF rats. Results Gavage administration of Fushen Granule at low and high doses down-regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate, endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol sulphate in CRF rats. Compared with the sham-operated group in the same period, CRF rats had a decreased abundance of the firmicutes phylum and an increased abundance of the bacteroidetes phylum at the phylum level, and a decreasing trend of the lactobacillus genus at the genus level. Fushen Granule intervention increased the abundance of the firmicutes phylum, decreased the abundance of the bacteroidetes phylum, and increased the abundance of the lactobacillus genus. The transplantation of Fushen Granule fecal bacteria significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA), 24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic metabolic toxins in CRF rats. Compared with the sham-operated group, the transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and Bacteroidetes phyla and the Lactobacillus genus. Conclusion Fushen Granule improved renal function and intestinal barrier function by regulating intestinal flora, inhibiting renal fibrosis, and delaying the progression of chronic renal failure.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guorong Fan
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqi Liu
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
8
|
Zhang X, Guo F, Cao D, Yan Y, Zhang N, Zhang K, Li X, Kumar P, Zhang X. Neuroprotective Effect of Ponicidin Alleviating the Diabetic Cognitive Impairment: Regulation of Gut Microbiota. Appl Biochem Biotechnol 2023; 195:735-752. [PMID: 36155887 DOI: 10.1007/s12010-022-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment is a major complication of diabetes mellitus, which is caused by constitutive hyperglycaemia. Ponicidin is a diterpenoid isolated from a Chinese traditional herb (Rabdosia rubescens) and demonstrates the various pharmacological effects. The goal of this study was to scrutinise the neuroprotective effect of ponicidin against diabetic nephropathy (DN) induced by streptozotocin (STZ). Intraperitoneal administration of STZ (55 mg/kg) was used for the induction of diabetes and rats were received oral administration of ponicidin (5, 10 and 15 mg/kg) until 28 days. The body weight, food intake, water intake and blood glucose level were assessed at regular time interval. Plasma insulin level, antioxidant, inflammatory cytokines, apoptosis marker and faecal gut microbiota compositions were estimated. DN-induced group rats revealed the augmented glucose level, water intake, food intake and reduced body weight. Ponicidin significantly (P < 0.001) repressed the glucose level and water food intake and improved the body weight and plasma insulin. Ponicidin significantly (P < 0.001) repressed the malonaldehyde (MDA) level and boosted the level of glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) in the brain and serum level. Ponicidin significantly (P < 0.001) repressed the level of interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and enhanced the level of interleukin-4 (IL-4), interleukin-10 (IL-10) in the brain and serum level. DN group rats exhibited the enhanced relative abundance of Firmicutes, along with enhancing the Firmicutes/Bacteroidetes ratio and repressing the Bacteroidetes relative abundance. Ponicidin effectually restored the relative abundance of Allobaculum, Lactobacillus and Ruminococcus genera. Our findings clearly demonstrated that ponicidin has a neuroprotective effect against diabetic cognitive impairment through modulating the gut microbiome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Guo
- People's Hospital of Lvliang, Shanxi, 033000, China
| | - Dujuan Cao
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinan Yan
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaili Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyi Li
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | - Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
9
|
Yang Y, Yu J, Huo J, Yan Y. Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1562-1576. [PMID: 36630317 DOI: 10.1021/acs.jafc.2c07084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of sesamolin on kidney injury, intestinal barrier dysfunction, and gut microbiota imbalance in high-fat and high-fructose (HF-HF) diet-fed mice and explored the underlying correlations among them. The results indicated that sesamolin suppressed metabolic disorders and increased renal function parameters. Histological evaluation showed that sesamolin mitigated renal epithelial cell degeneration and brush border damage. Meanwhile, sesamolin inhibited the endotoxin-mediated induction of the Toll-like receptor 4-related IKKα/NF-κB p65 pathway activation. Additionally, sesamolin mitigated intestinal barrier dysfunction and improved the composition of gut microbiota. The correlation results further indicated that changes in the dominant phyla, including Firmicutes, Deferribacterota, Desulfobacterota, and Bacteroidota, were more highly correlated with a reduction in endotoxemia and metabolic disorders, as well as decreases in intestinal proinflammatory response and related renal risk biomarkers. The results of this study suggest that sesamolin attenuates kidney injuries, which might be associated with its effects on the reduction of endotoxemia and related metabolic disorders through the restoration of the intestinal barrier and the modulation of gut microbiota. Thus, sesamolin may be a potential dietary supplement for protection against obesity-associated kidney injury.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
10
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Wang P, Guo R, Bai X, Cui W, Zhang Y, Li H, Shang J, Zhao Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front Endocrinol (Lausanne) 2022; 13:1034818. [PMID: 36589853 PMCID: PMC9802116 DOI: 10.3389/fendo.2022.1034818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles. Methods Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis. Results We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment. Conclusions Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Mary School, Nanchang, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Lv Q, Li Z, Sui A, Yang X, Han Y, Yao R. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Front Microbiol 2022; 13:977187. [PMID: 36060752 PMCID: PMC9433831 DOI: 10.3389/fmicb.2022.977187] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
16
|
Huang Y, Xin W, Xiong J, Yao M, Zhang B, Zhao J. The Intestinal Microbiota and Metabolites in the Gut-Kidney-Heart Axis of Chronic Kidney Disease. Front Pharmacol 2022; 13:837500. [PMID: 35370631 PMCID: PMC8971625 DOI: 10.3389/fphar.2022.837500] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidences demonstrate the involvement of gut microbiota in the progression of chronic kidney disease (CKD) and CKD-associated complications including cardiovascular disease (CVD) and intestinal dysfunction. In this review, we discuss the interactions between the gut, kidney and heart in CKD state, and elucidate the significant role of intestinal microbiota in the gut-kidney-heart axis hypothesis for the pathophysiological mechanisms of these diseases, during which process mitochondria may serve as a potential therapeutic target. Dysregulation of this axis will lead to a vicious circle, contributing to CKD progression. Recent studies suggest novel therapies targeting gut microbiota in the gut-kidney-heart axis, including dietary intervention, probiotics, prebiotics, genetically engineered bacteria, fecal microbiota transplantation, bacterial metabolites modulation, antibiotics, conventional drugs and traditional Chinese medicine. Further, the identification of specific microbial communities and their corresponding pathophysiological metabolites and the illumination of the gut-kidney-heart axis may contribute to innovative basic research, clinical trials and therapeutic strategies against CKD progression and uremic complications in CKD patients.
Collapse
|
17
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|