1
|
Al-Tantawy SM, Eraky SM, Eissa LA. Novel therapeutic target for diabetic kidney disease through downregulation of miRNA-192-5p and miRNA-21-5p by celastrol: implication of autophagy, oxidative stress, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03669-5. [PMID: 39702603 DOI: 10.1007/s00210-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases. Therefore, the present study investigated whether celastrol has anti-inflammatory, antioxidant, and antifibrotic effects as a natural compound against experimental DKD. Streptozotocin (55 mg/kg) was utilized for inducing DKD in a rat model. Antioxidant enzymes and renal function tests were assessed in serum samples. In kidney homogenate, relative miRNA-192-5p and miRNA-21-5p gene expressions were measured. Furthermore, using real-time PCR to evaluate the gene expressions of nucleus erythroid 2-related factor-2 (Nrf-2), matrix metalloproteinase-2 (MMP-2), proapoptotic caspase-3, antiapoptotic Bcl-2, LC-3, and Beclin-1. Moreover, the transforming growth factor β1 (TGF-β1), LC-3, Bcl-2, caspase-3 and NADPH oxidase 4 (NOX4) renal expressions were assessed semi-quantitatively using immunohistochemistry. Seven weeks of celastrol (1.5 mg/kg/day) treatment significantly ameliorated DKD. Celastrol improves kidney functions. Moreover, celastrol treatment demonstrated potent antioxidant effect. The mechanism of apoptosis resulting from the administration of celastrol included the modulation of Bcl-2 and caspase-3 expression in the kidney. Celasterol administration leads to an increase in LC-3 and Beclin-1 renal expression that resulting in autophagy. Celastrol treatment improved renal fibrosis by decreasing TGF-β1 and MMP-2 renal expression. These antifibrotic effects could be due to their ability to inhibit miRNA-192-5p and miRNA-21-5p expression in renal tissues. Celastrol exerts a renoprotective effect by targeting miRNA-21 and miRNA-192, as well as their downstream pathways, such as autophagy, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Cheng Y, Liu Y, Lin L, Li D, Peng L, Zheng K, Tao J, Li M. The effects of Tripterygium wilfordii Hook F on renal outcomes in type 2 diabetic kidney disease patients with severe proteinuria: a single-center cohort study. Ren Fail 2024; 46:2295425. [PMID: 38178377 PMCID: PMC10773657 DOI: 10.1080/0886022x.2023.2295425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
AIM Tripterygium wilfordii Hook F (TwHF) has been shown to substantially reduce proteinuria in patients with diabetic kidney disease (DKD); however, the effect of TwHF on renal outcomes in DKD remains unknown. Accordingly, we aimed to establish the effects of TwHF on renal outcomes in patients with DKD. METHODS Overall, 124 patients with DKD, induced by type 2 diabetes mellitus, with 24-h proteinuria > 2 g, and an estimated glomerular filtration rate > 30 mL/min/1.73 m2 were retrospectively investigated. The renal outcomes were defined as doubling serum creatinine levels or end-stage kidney disease. Kaplan-Meier curves and Cox regression analyses were performed to analyze prognostic factors for renal outcomes. RESULTS By the end of the follow-up, renal outcomes were observed in 23 and 11 patients in the non-TwHF and TwHF groups, respectively (p = 0.006). TwHF significantly reduced the risk of renal outcomes (adjusted hazard ratio [HR] 0.271, 95% confidence interval [CI] 0.111-0.660, p = 0.004) in patients with chronic kidney disease (CKD) G3 (adjusted HR 0.274, 95%CI 0.081-0.932, p = 0.039). Based on the Kaplan-Meier analysis, 1- and 3-year proportions of patients without renal outcomes were significantly lower in the non-TwHF group than those in the TwHF group (92.8% vs. 95.5% and 47.2% vs. 76.8%, respectively; p = 0.0018). CONCLUSION In DKD patients with severe proteinuria, TwHF could prevent DKD progression, especially in patients with CKD G3. A randomized clinical trial is needed to elucidate the benefits of TwHF on renal outcomes in patients with DKD.
Collapse
Affiliation(s)
- Yaqi Cheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Liu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liling Lin
- Department of Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danni Li
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying Peng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianling Tao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Jiang M, Xie Y, Wang P, Du M, Wang Y, Yan S. Research Progress of Triptolide Against Fibrosis. Drug Des Devel Ther 2024; 18:3255-3266. [PMID: 39081704 PMCID: PMC11287200 DOI: 10.2147/dddt.s467929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Fibrosis leads to organ failure and death, which is the final stage of many chronic diseases. Triptolide (TPL) is a terpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F (TwHF). Triptolide and its derivatives (Omtriptolide, Minnelide, (5R)-5-hydroxytriptolide) have been proven to have a variety of pharmacological effects. This study comprehensively reviewed the antifibrotic mechanism of TPL and its derivatives, and discussed the application of advanced nanoparticles (NPs) drug delivery system in the treatment of fibrotic diseases by TPL. The results show that TPL can inhibit immune inflammatory response, relieve oxidative stress and endoplasmic reticulum stress (ERS), regulate collagen deposition and inhibit myofibroblast production to play an anti-fibrosis effect and reduce organ injury. A low dose of TPL has no obvious toxicity. Under pathological conditions, a toxic dose of TPL has a protective effect on organs. The emergence of TPL derivatives (especially Minnelide) and NPs drug delivery systems promotes the anti-fibrosis effect of TPL and reduces its toxicity, which may be the main direction of anti-fibrosis research in the future.
Collapse
Affiliation(s)
- Minmin Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yongxia Xie
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ping Wang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Mengyu Du
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ying Wang
- Department of International Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
4
|
Jin J, Zhang M. Exploring the role of NLRP3 inflammasome in diabetic nephropathy and the advancements in herbal therapeutics. Front Endocrinol (Lausanne) 2024; 15:1397301. [PMID: 39104818 PMCID: PMC11299242 DOI: 10.3389/fendo.2024.1397301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.
Collapse
Affiliation(s)
- Jiangyuan Jin
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
5
|
Yan X, Shi J, Zhang Y, Liu J, Lin X, Yu C, Li X. Effectiveness and safety of tripterygium wilfordii poly-glycosides on glomerulonephritis: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1339153. [PMID: 38841368 PMCID: PMC11150713 DOI: 10.3389/fphar.2024.1339153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Treatment of glomerulonephritis presents several challenges, including limited therapeutic options, high costs, and potential adverse reactions. As a recognized Chinese patent medicine, Tripterygium wilfordii poly-glycosides (TWP) have shown promising benefits in managing autoimmune diseases. To evaluate clinical effectiveness and safety of TWP in treating glomerulonephritis, we systematically searched PubMed, Cochrane Library, Web of Science, and Embase databases for controlled studies published up to 12 July 2023. We employed weighted mean difference and relative risk to analyze continuous and dichotomous outcomes. This meta-analysis included 16 studies that included primary membranous nephropathy (PMN), type 2 diabetic kidney disease (DKD), and Henoch-Schönlein purpura nephritis (HSPN). Analysis revealed that additional TWP administration improved patients' outcomes and total remission rates, reduced 24-h urine protein (24hUP) and decreased relapse events. The pooled results demonstrated the non-inferiority of TWP to glucocorticoids in achieving total remission, reducing 24hUP, and converting the phospholipase A2 receptor (PLA2R) status to negative. For DKD patients, TWP effectively reduced 24hUP levels, although it did not significantly improve the estimated glomerular filtration rate (eGFR). Compared to valsartan, TWP showed comparable improvements in 24hUP and eGFR levels. In severe cases of HSPN in children, significant clinical remission and a reduction in 24hUP levels were observed with the addition of TWP treatment. TWP did not significantly increase the incidence of adverse reactions. Therefore, TWP could offer therapeutic benefits to patients with PMN, DKD, and severe HSPN, with a minimal increase in the risk of side effects.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Juan Shi
- Department of Pharmacy, The First People’s Hospital of Jinan, Jinan, China
| | - Yingying Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Juan Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiaoqing Lin
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Chungang Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| |
Collapse
|
6
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Tang Y, Wan F, Tang X, Lin Y, Zhang H, Cao J, Yang R. Celastrol attenuates diabetic nephropathy by upregulating SIRT1-mediated inhibition of EZH2related wnt/β-catenin signaling. Int Immunopharmacol 2023; 122:110584. [PMID: 37454630 DOI: 10.1016/j.intimp.2023.110584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Proteinuria is an independent risk factor for the progression of diabetic nephropathy (DN) and an imbalance in podocyte function aggravates proteinuria. Celastrol is the primary active ingredient of T. wilfordii, effective in treating DN renal injury; however, the mechanisms underlying its effect are unclear. We explored how celastrol prevents DN podocyte damage using in vivo and in vitro experiments. We randomly divided 24 male C57BLKS/J mice into three groups: db/m (n = 8), db/db (n = 8), and celastrol groups (db/db + celastrol, 1 mg/kg/d, gavage administration, n = 8). In vivo experiments lasted 12 weeks and intervention lasted ten weeks. Serum samples and kidney tissues were collected for biochemical tests, pathological staining, transmission electron microscopy, fluorescencequantitation polymerase chain reaction, and western blotting analysis. In vitro experiments to elaborate the mechanism of celastrol protection were performed on high glucose (HG)-induced podocyte injury. Celastrol reduced blood glucose levels and renal function index in db/db mice, attenuated renal histomorphological injury and glomerular podocyte foot injuries, and induced significant anti-inflammatory effects. Celastrol upregulated silent information regulator 2 related enzyme 1(SIRT1) expression and downregulated enhancer of zeste homolog (EZH2), inhibiting the wnt/β-catenin pathway-related molecules, such as wnt1, wnt7a, and β-catenin. SIRT1 repressed the promoter activity of EZH2, and was co-immunoprecipitated with EZH2 in mouse podocyte cells (MPC5). SIRT1 knockdown aggravated the protective effects of celastrol on MPC5 cells. Celastrol protected podocyte injury via SIRT1/EZH2, which participates in the wnt/β-catenin pathway. Overall, celastrol-mediated SIRT1 upregulation inhibited the EZH2-related wnt/β-catenin signaling pathway to attenuate DN and podocyte injury, providing a theoretical basis for celastrol clinical application.
Collapse
Affiliation(s)
- Yuewen Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feng Wan
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuanli Tang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Lin
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Huaqin Zhang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiawei Cao
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruchun Yang
- Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Guo Y, Wang M, Liu Y, Pang Y, Tian L, Zhao J, Liu M, Shen C, Meng Y, Wang Y, Cai Z, Zhao W. BaoShenTongLuo formula protects against podocyte injury by regulating AMPK-mediated mitochondrial biogenesis in diabetic kidney disease. Chin Med 2023; 18:32. [PMID: 36967383 PMCID: PMC10040124 DOI: 10.1186/s13020-023-00738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is considered to be an important contributor in podocyte injury under diabetic conditions. The BaoShenTongLuo (BSTL) formula has been shown to reduce podocyte damage and postpone the progression of diabetic kidney disease (DKD). The potential mechanisms underlying the effects of BSTL, however, have yet to be elucidated. In this study, we aimed to investigate whether the effects of BSTL are related to the regulation of mitochondrial biogenesis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometer (HPLC-ESI-MS) analysis was performed to investigate the characteristics of pure compounds in BSTL. db/db mice and mouse podocyte clone-5 (MPC5) cells were exposed to high glucose (HG) to induce DKD and podocyte damage. Body weight, random blood glucose, urinary albumin/creatinine ratio (UACR), indicators of renal function and renal histological lesions were measured. Markers of podocyte injury, mitochondrial morphology, mitochondrial deoxyribonucleic acid (mtDNA) content, mitochondrial respiratory chain complexes activities, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) levels were assessed. Protein expressions of AMPK, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), transcription factor A (TFAM), mitochondrial fusion protein 2 (MFN2) and dynamin-related protein 1 (DRP1) were also detected. MPC5 cells were transfected with AMPKα small interfering RNA (AMPKα siRNA) to determine the underlying mechanisms of BSTL improvement of mitochondrial function under diabetic conditions. RESULTS In vivo, treatment with BSTL reduced the UACR levels, reversed the histopathological changes in renal tissues, and alleviated the podocyte injury observed in db/db mice. After BSTL treatment, the decreased mtDNA content and mitochondrial respiratory chain complex I, III, and IV activities were significantly improved, and these effects were accompanied by maintenance of the protein expression of p-AMPKαT172, PGC-1α, TFAM and MFN2. The in vitro experiments also showed that BSTL reduced podocyte apoptosis, suppressed excessive cellular ROS production, and reversed the decreased in MMP that were observed under HG conditions. More importantly, the effects of BSTL in enhancing mitochondrial biogenesis and reducing podocyte apoptosis were inhibited in AMPKα siRNA-treated podocytes. CONCLUSION BSTL plays a crucial role in protecting against podocyte injury by regulating the AMPK-mediated mitochondrial biogenesis in DKD.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yufei Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyu Pang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lei Tian
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jingwen Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengchao Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuefen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
9
|
Liu P, Zhu W, Wang Y, Ma G, Zhao H, Li P. Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1142805. [PMID: 36942026 PMCID: PMC10023817 DOI: 10.3389/fendo.2023.1142805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease worldwide, and there is a lack of effective treatment strategies. Autophagy is a highly conserved lysosomal degradation process that maintains homeostasis and energy balance by removing protein aggregates and damaged organelles. Increasing evidence suggests that dysregulated autophagy may contribute to glomerular and tubulointerstitial lesions in the kidney under diabetic conditions. Emerging studies have shown that Chinese herbal medicine and its active compounds may ameliorate diabetic kidney injury by regulating autophagy. In this review, we summarize that dysregulation or insufficiency of autophagy in renal cells, including podocytes, glomerular mesangial cells, and proximal tubular epithelial cells, is a key mechanism for the development of DKD, and focus on the protective effects of Chinese herbal medicine and its active compounds. Moreover, we systematically reviewed the mechanism of autophagy in DKD regulated by Chinese herb compound preparations, single herb and active compounds, so as to provide new drug candidates for clinical treatment of DKD. Finally, we also reviewed the candidate targets of Chinese herbal medicine regulating autophagy for DKD. Therefore, further research on Chinese herbal medicine with autophagy regulation and their targets is of great significance for the realization of new targeted therapies for DKD.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| |
Collapse
|
10
|
Hou D, Shang S, LV J, Wang S. Tripterygium Wilfordii Polyglycosides (TP) Ameliorate Alcoholic Kidney Injury in Rats by Regulating Protein Expression Associated with the Nuclear Factor Erythroid 2-Related Factor 2 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To explore the mechanisms of protection of tripterygium wilfordii polyglycosides (TP) against alcoholic kidney injury by regulating Nrf2 signaling pathway in rats. Materials and Methods: Dividing rats into Control, Model, LD, MD and HD groups. The kidney was
weighed to calculate kidney index. The morphology of the kidney was observed by HE staining. Nrf2, p-Nrf2 and HO-1 in kidney were detected by immunohistochemistry. Measuring Scr by Jaffe’s method and BUN by diacetyl-oxime method. The renal SOD and MDA were detected by colorimetry. The
renal ROS was detected by fluorescence spectrometry. Results: Compared with Control, histopathological changes were observed in Model group, The kidney index, Scr, BUN, renal MDA and ROS concentrations increased significantly (P <0.001). Renal SOD activity, expression of p-Nrf2
and HO-1, p-Nrf2/Nrf2 decreased significantly (P < 0.001). With TP supplement, compared with Model, histopathological was improved, The kidney index, Scr, BUN, renal MDA and ROS concentrations decreased significantly (P <0.05, respectively); Renal SOD activity, p-Nrf2 and
HO-1, p-Nrf2/Nrf2 increased significantly (P <0.05, respectively) in TP treated groups (LD, MD and HD). Conclusion: TP can prevent or reduce oxidative stress and attenuate alcoholic kidney injury via regulating Nrf2 signaling pathway in vivo.
Collapse
Affiliation(s)
- Dandan Hou
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Sainan Shang
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Juan LV
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| | - Shuling Wang
- Shuangqiao Hospital, Chaoyang, Beijing, 100024, China
| |
Collapse
|
11
|
Zhang W, Liu X, Xia C, He L, Ma H, Wang X, Zhang P. Case report: A rare case of death due to end-stage renal disease caused by Tripterygium wilfordii-induced myelosuppression. Front Med (Lausanne) 2022; 9:1036422. [DOI: 10.3389/fmed.2022.1036422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Tripterygium wilfordii—a traditional Chinese herbal medicine—is used to treat several diseases, including chronic kidney disease, rheumatic autoimmune disorder, and skin disorders. With the development of modern pharmacology, scientists have gradually realized that T. wilfordii has side effects on several organs and systems of the human body, including the liver, kidney, reproductive system, hematopoietic system, and immune system. Our understanding of its toxicity remains unclear. The incidence of problems in the hematopoietic system is not low but few related studies have been conducted. The serious consequences need to be of concern to clinicians and scientists. To ensure the safety of patients, it is important to elucidate the mechanism underlying the damage to the hematopoietic system caused by T. wilfordii and strategies to reduce its toxicity. Routine blood and biochemical tests should be conducted when administering T. wilfordii, and in case of any abnormality, the medication should be terminated in time along with a comprehensive symptomatic treatment. Herein, we report the case of a 50-year-old Chinese female with end-stage renal disease (ESRD) who developed severe bone marrow suppression after taking a short-term normal dose of a T. wilfordii-containing decoction. She died of sepsis and septic shock, although timely therapeutic measures (e.g., stimulating hematopoiesis, anti-infection treatment, and hemodialysis) were administered. To the best of our knowledge, this is the first report of death by T. wilfordii-induced myelosuppression from a short term, conventional dose in an adult female with ESRD. Although the underlying mechanism remains unclear, this case contradicts the notion that side effects on the hematopoietic system are non-lethal.
Collapse
|
12
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Tang YW, Yang RC, Wan F, Tang XL, Zhang HQ, Lin Y. Celastrol attenuates renal injury in 5/6 nephrectomized rats via inhibiting epithelial-mesenchymal transition and transforming growth factor-β1/Smad3 pathway. Exp Biol Med (Maywood) 2022; 247:1947-1955. [PMID: 36046983 PMCID: PMC9742752 DOI: 10.1177/15353702221118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal injury is an important factor in the development of chronic kidney diseases that pathologically manifested as renal fibrosis and podocyte damage. In the disease state, renal fibroblasts lead to high expression levels of α-smooth muscle actin (α-SMA), while podocytes undergo epithelial-mesenchymal transition, leading to proteinuria. Celastrol, a bioactive compound in the medicinal plant Tripterygium wilfordii, was found to delay the progression of early diabetic nephropathy and attenuate renal fibrosis in mice with unilateral ureteral obstruction. However, its effect on the renal system in 5/6 nephrectomized (Nx) rats remains unknown. The aim of this study was to explore the protective effects of celastrol and its underlying mechanisms in 5/6 Nx rats. We found that 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index and cholesterol significantly increased (P < 0.05), while that of serum albumin decreased significantly in 5/6 Nx rats. After intervention with celastrol, 24 h proteinuria and levels of blood urea nitrogen, serum creatinine, triglycerides, serum P, renal index, and cholesterol significantly decreased, while that of serum albumin significantly increased. Renal tissue pathological staining and transmission electron microscopy showed that celastrol ameliorated kidney injury and glomerular podocyte foot injury and induced significant anti-inflammatory effects. Quantitative polymerase chain reaction (PCR) and western blotting results revealed that nephrin and NEPH1 expression levels were upregulated, whereas α-SMA and Col4a1 expression levels were downregulated in the celastrol group. Celastrol inhibited the expression of transforming growth factor (TGF)-β1/Smad3 signaling pathway-related molecules such as TGF-β1 and P-Smad3. In summary, celastrol contributes to renal protection by inhibiting the epithelial-mesenchymal transdifferentiation and TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Yue-Wen Tang
- Department of Nephrology, Dingqiao District of Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China,Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China
| | - Ru-Chun Yang
- Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China,Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China,Ru-Chun Yang.
| | - Feng Wan
- Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China,Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China
| | - Xuan-Li Tang
- Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China,Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China
| | - Hua-Qin Zhang
- Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China,Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China
| | - Yi Lin
- Key Laboratory of Kidney Disease Prevention and Control Technology Zhejiang Province, Hangzhou 310000, China,Laboratory of Nephropathy, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310000, China
| |
Collapse
|
14
|
Widowati W, Prahastuti S, Tjokropranoto R, Onggowidjaja P, Kusuma HSW, Afifah E, Arumwardana S, Maulana MA, Rizal R. Quercetin prevents chronic kidney disease on mesangial cells model by regulating inflammation, oxidative stress, and TGF-β1/SMADs pathway. PeerJ 2022; 10:e13257. [PMID: 35673387 PMCID: PMC9167587 DOI: 10.7717/peerj.13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Chronic kidney disease (CKD) happens due to decreasing kidney function. Inflammation and oxidative stress have been shown to result in the progression of CKD. Quercetin is widely known to have various bioactivities including antioxidant, anticancer, and anti-inflammatory activities. Objective To evaluate the activity of quercetin to inhibit inflammation, stress oxidative, and fibrosis on CKD cells model (mouse mesangial cells induced by glucose). Methods and Material The SV40 MES 13 cells were plated in a 6-well plate with cell density at 5,000 cells/well. The medium had been substituted for 3 days with a glucose-induced medium with a concentration of 20 mM. Quercetin was added with 50, 10, and 5 µg/mL concentrations. The negative control was the untreated cell. The levels of TGF-β1, TNF-α, and MDA were determined using ELISA KIT. The gene expressions of the SMAD7, SMAD3, SMAD2, and SMAD4 were analyzed using qRT-PCR. Results Glucose can lead to an increase in inflammatory cytokines TNF-α, TGF-β1, MDA as well as the expressions of the SMAD2, SMAD3, SMAD4, and a decrease in SMAD7. Quercetin caused the reduction of TNF-α, TGF-β1, MDA as well as the expression of the SMAD2, SMAD3, SMAD4, and increased SMAD7. Conclusion Quercetin has anti-inflammation, antioxidant, antifibrosis activity in the CKD cells model. Thus, quercetin is a promising substance for CKD therapy and further research is needed to prove this in CKD animal model.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Sijani Prahastuti
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Rita Tjokropranoto
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Philips Onggowidjaja
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Ervi Afifah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Muhamad Aldi Maulana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, University of Indonesia, Depok, West Java, Indonesia
| |
Collapse
|