1
|
Wang X, Yao F, Yang L, Han D, Zeng Y, Huang Z, Yang C, Lin B, Chen X. Macrophage extracellular vesicle-packaged miR-23a-3p impairs maintenance and angiogenic capacity of human endothelial progenitor cells in neonatal hyperoxia-induced lung injury. Stem Cell Res Ther 2024; 15:295. [PMID: 39256862 PMCID: PMC11389047 DOI: 10.1186/s13287-024-03920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.
Collapse
Affiliation(s)
- Xuan Wang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Fang Yao
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Lingling Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Yali Zeng
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Zilu Huang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Chuanzhong Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Bingchun Lin
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
- The First Clinical Medical School, Southern Medical University, Guangzhou, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation 2024; 47:469-482. [PMID: 37917328 PMCID: PMC11074042 DOI: 10.1007/s10753-023-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that specifically affects preterm infants. Oxygen therapy administered to treat BPD can lead to hyperoxia-induced lung injury, characterized by apoptosis of lung alveolar epithelial cells. Our epitranscriptomic microarray analysis of normal mice lungs and hyperoxia-stimulated mice lungs revealed elevated RNA expression levels of IL-33, as well as increased m6A RNA methylation levels of IL-33 and PVT1 in the hyperoxia-stimulated lungs. This study aimed to investigate the role of the PVT1/IL-33 axis in BPD. A mouse model of BPD was established through hyperoxia induction, and lung histological changes were assessed by hematoxylin-eosin staining. Parameters such as radial alveolar count and mean chord length were measured to assess lung function. Mouse and human lung alveolar epithelial cells (MLE12 and A549, respectively) were stimulated with hyperoxia to create an in vitro BPD model. Cell apoptosis was detected using Western blotting and flow cytometry analysis. Our results demonstrated that silencing PVT1 suppressed apoptosis in MLE12 and A549 cells and improved lung function in hyperoxia-stimulated lungs. Additionally, IL-33 reversed the effects of PVT1 both in vivo and in vitro. Through online bioinformatics analysis and RNA-binding protein immunoprecipitation assays, YTHDC1 was identified as a RNA-binding protein (RBP) for both PVT1 and IL-33. We found that PVT1 positively regulated IL-33 expression by recruiting YTHDC1 to mediate m6A modification of IL-33. In conclusion, silencing PVT1 demonstrated beneficial effects in alleviating BPD by facilitating YTHDC1-mediated m6A modification of IL-33. Inhibition of the PVT1/IL-33 axis to suppress apoptosis in lung alveolar epithelial cells may hold promise as a therapeutic approach for managing hyperoxia-induced lung injury in BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Xiangye Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Sai Zhao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
3
|
Jin D, Hui Y, Liu D, Li N, Leng J, Wang G, Wang Q, Lu Z. LINC00942 inhibits ferroptosis and induces the immunosuppression of regulatory T cells by recruiting IGF2BP3/SLC7A11 in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:29. [PMID: 38353724 PMCID: PMC10867055 DOI: 10.1007/s10142-024-01292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high recurrence rate and a poor prognosis. Long intergenic nonprotein coding RNA 942 (LINC00942) is reported to be related to ferroptosis and the immune response in HCC and serves as an oncogene in various cancers. This research aimed to explore the contribution of LINC00942 in HCC progression. Functional assays were used to evaluate the functional role of LINC00942 in vitro and in vivo. Mechanistic assays were conducted to assess the association of LINC00942 with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and solute carrier family 7 member 11 (SLC7A11) and the regulatory pattern of LINC00942 in HCC cells. LINC00942 was found to exhibit upregulation in HCC tissue and cells. LINC00942 facilitated HCC cell proliferation, suppressed ferroptosis, and converted naive CD4+ T cells to inducible Treg (iTreg) cells by regulating SLC7A11. Furthermore, SLC7A11 expression was positively modulated by LINC00942 in HCC cells. IGF2BP3 was a shared RNA-binding protein (RBP) for LINC00942 and SLC7A11. The binding between the SLC7A11 3' untranslated region and IGF2BP3 was verified, and LINC00942 was found to recruit IGF2BP3 to promote SLC7A11 mRNA stability in an m6A-dependent manner. Moreover, mouse tumor growth and proliferation were inhibited, and the number of FOXP3+CD25+ T cells was increased, while ferroptosis was enhanced after LINC00942 knockdown in vivo. LINC00942 suppresses ferroptosis and induces Treg immunosuppression in HCC by recruiting IGF2BP3 to enhance SLC7A11 mRNA stability, which may provide novel therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dong Jin
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Di Liu
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Nan Li
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, Shekou Shenzhen People's Hospital, 36 Shekou Industrial 7 Road, Nanshan District, Shenzhen, 518067, Guangdong, China.
| |
Collapse
|
4
|
Grimm SL, Reddick S, Dong X, Leek C, Wang AX, Gutierrez MC, Hartig SM, Moorthy B, Coarfa C, Lingappan K. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Biol Sex Differ 2023; 14:50. [PMID: 37553579 PMCID: PMC10408139 DOI: 10.1186/s13293-023-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by an arrest in lung development and is a leading cause of morbidity in premature neonates. It has been well documented that BPD disproportionally affects males compared to females, but the molecular mechanisms behind this sex-dependent bias remain unclear. Female mice show greater preservation of alveolarization and angiogenesis when exposed to hyperoxia, accompanied by increased miR-30a expression. In this investigation, we tested the hypothesis that loss of miR-30a would result in male and female mice experiencing similar impairments in alveolarization and angiogenesis under hyperoxic conditions. METHODS Wild-type and miR-30a-/- neonatal mice were exposed to hyperoxia [95% FiO2, postnatal day [PND1-5] or room air before being euthanized on PND21. Alveolarization, pulmonary microvascular development, differences in lung transcriptome, and miR-30a expression were assessed in lungs from WT and miR-30a-/- mice of either sex. Blood transcriptomic signatures from preterm newborns (with and without BPD) were correlated with WT and miR-30a-/- male and female lung transcriptome data. RESULTS Significantly, the sex-specific differences observed in WT mice were abrogated in the miR-30a-/- mice upon exposure to hyperoxia. The loss of miR-30a expression eliminated the protective effect in females, suggesting that miR-30a plays an essential role in regulating alveolarization and angiogenesis. Transcriptome analysis by whole lung RNA-Seq revealed a significant response in the miR-30a-/- female hyperoxia-exposed lung, with enrichment of pathways related to cell cycle and neuroactive ligand-receptor interaction. Gene expression signature in the miR-30a-/- female lung associated with human BPD blood transcriptomes. Finally, we showed the spatial localization of miR-30a transcripts in the bronchiolar epithelium. CONCLUSIONS miR-30a could be one of the biological factors mediating the resilience of the female preterm lung to neonatal hyperoxic lung injury. A better understanding of the effects of miR-30a on pulmonary angiogenesis and alveolarization may lead to novel therapeutics for treating BPD.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
| | - Samuel Reddick
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Xiao Wang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean M Hartig
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Feng DD, Chen JH, Chen YF, Cao Q, Li BJ, Chen XQ, Jin R, Zhou GP. MALAT1 binds to miR-188-3p to regulate ALOX5 activity in the lung inflammatory response of neonatal bronchopulmonary dysplasia. Mol Immunol 2023; 160:67-79. [PMID: 37385102 DOI: 10.1016/j.molimm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) causes high morbidity and mortality in infants, but no effective preventive or therapeutic agents have been developed to combat BPD. In this study, we assessed the expression of MALAT1 and ALOX5 in peripheral blood mononuclear cells from BPD neonates, hyperoxia-induced rat models and lung epithelial cell lines. Interestingly, we found upregulated expression of MALAT1 and ALOX5 in the experimental groups, along with upregulated expression of proinflammatory cytokines. According to bioinformatics prediction, MALAT1 and ALOX5 simultaneously bind to miR-188-3p, which was downregulated in the experimental groups above. Silencing MALAT1 or ALOX5 and overexpressing miR-188-3p inhibited apoptosis and promoted the proliferation of hyperoxia-treated A549 cells. Suppressing MALAT1 or overexpressing miR-188-3p increased the expression levels of miR-188-3p but decreased the expression levels of ALOX5. Moreover, RNA immunoprecipitation (RIP) and luciferase assays showed that MALAT1 directly targeted miR-188-3p to regulate ALOX5 expression in BPD neonates. Collectively, our study demonstrates that MALAT1 regulates ALOX5 expression by binding to miR-188-3p, providing novel insights into potential therapeutics for BPD treatment.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yu-Fei Chen
- Department of Pediatrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Bing-Jie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
6
|
CREB1 Transcriptionally Activates LTBR to Promote the NF-κB Pathway and Apoptosis in Lung Epithelial Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9588740. [PMID: 36118831 PMCID: PMC9481394 DOI: 10.1155/2022/9588740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent chronic pediatric lung disease. Aberrant proliferation and apoptosis of lung epithelial cells are important in the pathogenesis of BPD. Lymphotoxin beta receptor (LTBR) is expressed in lung epithelial cells. Blocking LTBR induces regeneration of lung tissue and reverts airway fibrosis in young and aged mice. This study is aimed at revealing the role of LTBR in BPD. A mouse model of BPD and two in vitro models of BPD using A549 cells and type II alveolar epithelial (ATII) cells were established by exposure to hyperoxia. We found that LTBR and CREB1 exhibited a significant upregulation in lungs of mouse model of BPD. LTBR and CREB1 expression were also increased by hyperoxia in A549 and ATII cells. According to results of cell counting kit-8 assay and flow cytometry analysis, silencing of LTBR rescued the suppressive effect of hyperoxia on cell viability and its promotive effect on cell apoptosis of A549 and ATII cells. Bioinformatics revealed CREB1 as a transcriptional factor for LTBR, and the luciferase reporter assay and ChIP assay subsequently confirmed it. The NF-κB pathway was regulated by LTBR. CREB1 induced LTBR expression at the transcriptional level to regulate NF-κB pathway and further modulate A549 and ATII cells viability and apoptosis. In conclusion, this study revealed the CREB1/LTBR/NF-κB pathway in BPD and supported the beneficial role of LTBR silence in BPD by promoting viability and decreasing apoptosis of lung epithelial cells.
Collapse
|