1
|
Negi SS, Sharma K, Bhargava A, Singh P. A comprehensive profile of SARS-CoV-2 variants spreading during the COVID-19 pandemic: a genomic characterization study from Chhattisgarh State, India. Arch Microbiol 2024; 206:68. [PMID: 38238530 DOI: 10.1007/s00203-023-03807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
SARS-CoV-2 has expressively changed its sequences during the COVID-19 pandemic situation by encompassing persistent evolutionary mutational changes resulting in the emergence of many clades and lineages. Evolution of these SARS-CoV-2 variants have significantly imparted fitness advantage to the virus, enhanced its transmissibility and severity of the disease. These new variants are a potential threat to the vaccine efficacy as well. It is therefore pertinent to monitor the evolution of these variants and their epidemiological and clinical impact, in a geographic setting. This study has thus looked into the geographic distribution and genetic diversity of SARS-CoV-2 variants and the evolutionary circulation of different clades in Chhattisgarh (CG) state from March 2020 to July 2023. A total of 3018 sequences were retrieved from the GISAID database, in which 558 were submitted by us. The demographic data revealed male preponderance of 56.45% versus 43.54% females, with the overall mean age of 36.5 years. SARS-CoV-2 sequences represented many variants viz., Delta (55%), Omicron (22%) and others (15%) with a small proportion of recombinant (5%), Kappa (2%), and Alpha (1%). The viral clades G was found predominant for a year from initial days of pandemic in March, 2020 to January, 2021 which then subsequently evoluted to subclade GK (Delta B.1.617.2) and remained in circulation in CG till November, 2021. From December 2021, the GRA (Omicron B.1.1.529) variant had replaced GK to become the dominant strain and continues to predominate in present time. GRA clade is however continuously encompassing new recombinant strains, having various non-synonymous mutations especially in spike protein. The non-synonymous mutation P314L in ORF1b, S84L in ORF8 and D614G in spike protein were found as the pan mutation carried over from clade G to GRA. The continuous evolution in SARS-CoV2 warrants periodical geographic genomic surveillance monitoring to timely detect any new variants having the potential of causing future outbreak.
Collapse
Affiliation(s)
- Sanjay Singh Negi
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Kuldeep Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Anudita Bhargava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Pushpendra Singh
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
| |
Collapse
|
2
|
Bhardwaj P, Mishra SK, Behera SP, Zaman K, Kant R, Singh R. Genomic evolution of the SARS-CoV-2 Variants of Concern: COVID-19 pandemic waves in India. EXCLI JOURNAL 2023; 22:451-465. [PMID: 37534220 PMCID: PMC10390896 DOI: 10.17179/excli2023-6098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
SARS-CoV-2 has mutated rapidly since its first case report in Wuhan, China, leading to the emergence of an indefinite number of variants. India has witnessed three waves of the COVID-19 pandemic. The country saw its first wave of SARS-CoV-2 illness from late January 2020 to February 2021. With a peak surge of cases in mid-September 2020, India recorded more than 11 million cases and a death toll of more than 0.165 million at this time. India faced a brutal second wave driven by the emergence of highly infectious SARS-CoV-2 variants B.1.617.2 (Delta variant) and the third wave with the leading cause of BA.2 (Omicron variant), which has led to an unprecedented rise in COVID-19 cases in the country. On September 14, 2022, India recorded a cumulative 44.51 million cases of COVID-19 with more than 0.528 million deaths. The discovery of common circulating mutants is facilitated by genome sequencing. The changes in the Spike surface glycoprotein recombinant binding domains served as the critical alterations, resulting in enhanced infectivity and transmissibility, with severe clinical effects. Further, the predominant mutation in the SARS-CoV-2 spike protein; the D614G strains served as a model for vaccine development. The mutation of the Wuhan strain to the Variant of Concern led to a significant increase in SARS-CoV-2 infections. In addition, there was a shift in the age group affected by SARS-CoV-2 variant infection. The current review summarized the COVID-19 pandemic's Variant of Concern and the advent of SARS-CoV-2 in India.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Shailendra Kumar Mishra
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Sthita Pragnya Behera
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Kamran Zaman
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Rajni Kant
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| | - Rajeev Singh
- Indian Council of Medical Research (ICMR) - Regional Medical Research Center Gorakhpur, BRD Medical College Campus, Gorakhpur-273013, U.P., India
| |
Collapse
|
3
|
Zaman K, Shete AM, Mishra SK, Kumar A, Reddy MM, Sahay RR, Yadav S, Majumdar T, Pandey AK, Dwivedi GR, Deval H, Singh R, Behera SP, Kumar N, Patil S, Kumar A, Dudhmal M, Joshi Y, Shukla A, Gawande P, Kavathekar A, Kumar N, Kumar V, Kumar K, Singh RS, Kumar M, Tiwari S, Verma A, Yadav PD, Kant R. Omicron BA.2 lineage predominance in severe acute respiratory syndrome coronavirus 2 positive cases during the third wave in North India. Front Med (Lausanne) 2022; 9:955930. [PMID: 36405589 PMCID: PMC9666497 DOI: 10.3389/fmed.2022.955930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Background Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.
Collapse
Affiliation(s)
- Kamran Zaman
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Anita M Shete
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Shailendra Kumar Mishra
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Abhinendra Kumar
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Mahendra M Reddy
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Rima R Sahay
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Shailendra Yadav
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Triparna Majumdar
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Ashok K Pandey
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Gaurav Raj Dwivedi
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Hirawati Deval
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Rajeev Singh
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Sthita Pragnya Behera
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Niraj Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Savita Patil
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Ashish Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Manisha Dudhmal
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Yash Joshi
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Aishwarya Shukla
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Pranita Gawande
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Asif Kavathekar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Nalin Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Vijay Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Kamlesh Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Ravi Shankar Singh
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Manoj Kumar
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Shashikant Tiwari
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| | - Ajay Verma
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Pragya D Yadav
- Maximum Containment Facility, Indian Council of Medical Research-National Institute of Virology Pune (ICMR-NIV Pune), Pune, India
| | - Rajni Kant
- Indian Council of Medical Research-Regional Medical Research Centre Gorakhpur (ICMR-RMRC Gorakhpur), Gorakhpur, India
| |
Collapse
|
4
|
Pezzotti G, Ohgitani E, Fujita Y, Imamura H, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Raman Fingerprints of the SARS-CoV-2 Delta Variant and Mechanisms of Its Instantaneous Inactivation by Silicon Nitride Bioceramics. ACS Infect Dis 2022; 8:1563-1581. [PMID: 35819780 PMCID: PMC9305655 DOI: 10.1021/acsinfecdis.2c00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo
Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo,
Japan
- Center for Advanced Medical Engineering and
Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka
565-0854, Japan
- Institute of Biomaterials and Bioengineering,
Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai,
Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
- Biomedical Research Center, Kyoto Institute
of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and
Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of
Dentistry, Los Angeles, California 90095, United
States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Kumar N, Misra BR, Reddy MM, Deval H, Zaman K, Kant R. COVID‐19 transmission among vaccinated laboratory workers during the second wave in eastern Uttar Pradesh, India. J Med Virol 2022; 94:3512-3514. [PMID: 35434827 PMCID: PMC9088332 DOI: 10.1002/jmv.27788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Niraj Kumar
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| | - Brij Ranjan Misra
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| | - Mahendra M Reddy
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| | - Hirawati Deval
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| | - Kamran Zaman
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| | - Rajni Kant
- Indian Council of Medical Research – Regional Medical Research Centre (ICMR – RMRC)Gorakhpur
| |
Collapse
|