1
|
Stachowska E, Gudan A, Mańkowska-Wierzbicka D, Liebe R, Krawczyk M. Dysbiosis and nutrition in steatotic liver disease: addressing the unrecognized small intestinal bacterial overgrowth (SIBO) challenge. Intern Emerg Med 2024; 19:1229-1234. [PMID: 38499938 DOI: 10.1007/s11739-024-03533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Steatotic liver disease (SLD) is characterized by hepatic fat accumulation, potentially causing major consequences such as liver decompensation. Currently, we lack medications for the treatment of SLD. Therapeutic recommendations for patients include a hypocaloric diet, weight loss, and physical activity. In particular, the Mediterranean diet is frequently recommended. However, this diet might exacerbate intestinal problems in a subset of patients with coexisting small intestinal bacterial overgrowth (SIBO). Previous studies have reported that SIBO is more predominant in patients with fatty liver than in healthy individuals. Both our research and the findings of others have highlighted a challenge related to nutritional therapy in patients with fatty liver who also suffer from SIBO inasmuch as SIBO induces several phenomena (like bloating or abdominal pain) that can adversely affect patients' quality of life and might be exacerbated by the Mediterranean diet. This may lower their adherence to the intervention. As a solution, we suggest introducing additional diagnostics (e.g., breath test) in patients with SLD who complain of SIBO-like symptoms. The next step is to modify their diets temporarily starting with several weeks of "elimination and sanitation." This would involve restricting products rich in fermentable sugars and polyols, while simultaneously treating the bacterial overgrowth. In summary, while the hypocaloric Mediterranean diet is beneficial for patients with fatty liver, those with coexisting SIBO may experience exacerbated symptoms. It is vital to consider additional diagnostics and dietary modifications for this subset of patients to address both liver and intestinal health concurrently.
Collapse
Affiliation(s)
- Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Liu J, MacNaughtan J, Kerbert AJC, Portlock T, Martínez Gonzalez J, Jin Y, Clasen F, Habtesion A, Ji H, Jin Q, Phillips A, De Chiara F, Ingavle G, Jimenez C, Zaccherini G, Husi K, Rodriguez Gandia MA, Cordero P, Soeda J, McConaghy L, Oben J, Church K, Li JV, Wu H, Jalan A, Gines P, Solà E, Eaton S, Morgan C, Kowalski M, Green D, Gander A, Edwards LA, Cox IJ, Cortez-Pinto H, Avery T, Wiest R, Durand F, Caraceni P, Elosua R, Vila J, Pavesi M, Arroyo V, Davies N, Mookerjee RP, Vargas V, Sandeman S, Mehta G, Shoaie S, Marchesi J, Albillos A, Andreola F, Jalan R. Clinical, experimental and pathophysiological effects of Yaq-001: a non-absorbable, gut-restricted adsorbent in models and patients with cirrhosis. Gut 2024; 73:1183-1198. [PMID: 38621924 DOI: 10.1136/gutjnl-2023-330699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis. DESIGN Performance of Yaq-001 was evaluated in vitro. Two-rat models of cirrhosis and ACLF, (4 weeks, bile duct ligation with or without lipopolysaccharide), receiving Yaq-001 for 2 weeks; and two-mouse models of cirrhosis (6-week and 12-week carbon tetrachloride (CCl4)) receiving Yaq-001 for 6 weeks were studied. Organ and immune function, gut permeability, transcriptomics, microbiome composition and metabolomics were analysed. The effect of faecal water on gut permeability from animal models was evaluated on intestinal organoids. A multicentre, double-blind, randomised, placebo-controlled clinical trial in 28 patients with cirrhosis, administered 4 gr/day Yaq-001 for 3 months was performed. RESULTS Yaq-001 exhibited rapid adsorption kinetics for endotoxin. In vivo, Yaq-001 reduced liver injury, progression of fibrosis, portal hypertension, renal dysfunction and mortality of ACLF animals significantly. Significant impact on severity of endotoxaemia, hyperammonaemia, liver cell death, systemic inflammation and organ transcriptomics with variable modulation of inflammation, cell death and senescence in the liver, kidneys, brain and colon was observed. Yaq-001 reduced gut permeability in the organoids and impacted positively on the microbiome composition and metabolism. Yaq-001 regulated as a device met its primary endpoint of safety and tolerability in the clinical trial. CONCLUSIONS This study provides strong preclinical rationale and safety in patients with cirrhosis to allow clinical translation. TRIAL REGISTRATION NUMBER NCT03202498.
Collapse
Affiliation(s)
- Jinxia Liu
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jane MacNaughtan
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Annarein J C Kerbert
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Javier Martínez Gonzalez
- Hospital Ramón y Cajal, IRYCIS, CIBEREHD, Universidad de Alcalá, Madrid, Spain
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Yi Jin
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Abeba Habtesion
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Alexandra Phillips
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Francesco De Chiara
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Ganesh Ingavle
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Cesar Jimenez
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-related Diseases, University of Bologna Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Katherine Husi
- Department of Gastroenterology, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Paul Cordero
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Junpei Soeda
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Lynda McConaghy
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Jude Oben
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Karen Church
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Jia V Li
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Haifeng Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | - Pere Gines
- Liver Unit, Hospital Clinic of Barcelona, IDIBAPS, Faculty of Medicine and Health sciences, University of Barcelona, Barcelona, Spain
| | - Elsa Solà
- Liver Unit, Hospital Clinic of Barcelona, IDIBAPS, Faculty of Medicine and Health sciences, University of Barcelona, Barcelona, Spain
| | - Simon Eaton
- Institute of Child Health, University College London, London, UK
| | - Carrie Morgan
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Michal Kowalski
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Daniel Green
- Yaqrit Discovery Limited. The Elms Courtyard, Bromesberrow, Ledbury, UK
| | - Amir Gander
- Tissue Access for Patient Benefit, University College London, London, UK
| | - Lindsey A Edwards
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Tower, Guy's Hospital, King's College London, London, UK
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Reiner Wiest
- UVCM Gastroenterology, University Bern, Bern, Switzerland
| | - Francois Durand
- Hepatology and Liver Intensive Care, Hospital Beaujon, Clichy, University paris Cité, Paris, France
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Marco Pavesi
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Nathan Davies
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Victor Vargas
- Liver Unit, Hospital Vall d'Hebron, Universitat Autónoma, CIBERehd, Barcelona, Spain
| | - Susan Sandeman
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Gautam Mehta
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Julian Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, St Mary's Hospital, Imperial College London, London, UK
| | - Agustín Albillos
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramon y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Fausto Andreola
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
| | - Rajiv Jalan
- Liver Failure Group, UCL Institute for Liver & Digestive Health, Division of Medicine, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| |
Collapse
|
3
|
Ortiz-López N, Madrid AM, Aleman L, Zazueta A, Smok G, Valenzuela-Pérez L, Poniachik J, Beltrán CJ. Small intestinal bacterial overgrowth in obese patients with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease: a cross-sectional study. Front Med (Lausanne) 2024; 11:1376148. [PMID: 38854668 PMCID: PMC11157043 DOI: 10.3389/fmed.2024.1376148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Background/aims The metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity are frequent comorbidities with a high prevalence worldwide. Their pathogenesis are multifactorial, including intestinal dysbiosis. The role of small intestinal bacterial overgrowth (SIBO) in MASLD progression in obese patients remains unknown. We aimed to determine the association between SIBO and the severity of MASLD in obese patients. Methods An observational and cross-sectional study was conducted in obese patients, diagnosed with or without MASLD by liver biopsy. Metabolic dysfunction-associated steatotic liver (MASL), metabolic dysfunction-associated steatohepatitis without fibrosis (MASH-NF), MASH with fibrosis (MASH-F), or without MASLD (control subjects, CS) were identified by presence of steatosis, portal and lobular inflammation, and fibrosis. SIBO was determined by standardized lactulose breath tests. Results A total of 59 patients with MASLD, 16 with MASL, 20 with MASH-NF, 23 with MASH-F, and 14 CS were recruited. Higher percentages of SIBO were observed in MASLD patients (44.2%) compared to CS (14.2%; p = 0.0363). Interestingly, MASH-F showed higher percentages of SIBO (65.2%) in comparison to non-fibrotic MASLD (33.3%; p = 0.0165). The presence of SIBO was not correlated with the level of hepatic steatosis in MASLD patients. Conclusions A positive correlation between MASLD and SIBO in obese patients was principally explained by the presence of liver fibrosis. Our findings suggest a pathogenic role of intestinal dysbiosis in the progression of MASLD. Future research will elucidate the underlying mechanisms of SIBO in MASLD advancement.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- Section of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ana María Madrid
- Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Gladys Smok
- Department of Pathologist Anatomy, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Florent V, Dennetiere S, Gaudrat B, Andrieux S, Mulliez E, Norberciak L, Jacquez K. Prospective Monitoring of Small Intestinal Bacterial Overgrowth After Gastric Bypass: Clinical, Biological, and Gas Chromatographic Aspects. Obes Surg 2024; 34:947-958. [PMID: 38300481 DOI: 10.1007/s11695-024-07080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND AND AIMS Obesity is a predisposing factor for small intestinal bacterial overgrowth (SIBO). The aim of this study was to prospectively evaluate the prevalence of SIBO as well as its clinical, biological, and nutritional aspects before and up to 24 months after a Roux-en-Y gastric bypass (RYGB) surgery. PATIENTS AND METHODS Fifty-one patients (mean BMI 46.9 kg/m2, 66.7% women) requesting RYGB were included between 2016 and 2020. Each patient underwent a glucose breath test, a standardized interrogation on functional digestive signs, a dietary survey, a blood test, a fecalogram, and anthropometric data gathering. These investigations were carried out before surgery and at 1, 3, 6, 9, 12, 18, and 24 months after RYGB. RESULTS Before surgery, we found a prevalence of 17.6% of SIBO (95% CI = [8.9%; 31.4%]). After RYGB, at the end of 24 months of follow-up, 89.5% of patients developed SIBO. Anal incontinence appeared to be very frequent after surgery, affecting 18.8% of our population 18 months after surgery. We observed positive steatorrhea after surgery with an average of 11.1 g of lipids/24 h despite a significant limitation of dietary lipids (p = 0.0282). CONCLUSION Our study corroborates data in the literature on the prevalence of SIBO in severe obesity patients. For the first time, we observed the sudden appearance of SIBO after RYGB, with a correlation between exhaled hydrogen on a breath test and lipid malabsorption on the fecalogram. As a result, these patients develop fatty diarrhea, with frequent fecal incontinence.
Collapse
Affiliation(s)
- Vincent Florent
- Department of Nutrition, Arras General Hospital, Bd Besnier, 62000, Arras, France.
- Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, Lille Neuroscience & Cognition, UMR-S 1172, University of Lille, 59000, Lille, France.
| | - Solen Dennetiere
- Department of Nutrition, Arras General Hospital, Bd Besnier, 62000, Arras, France
- Department of Nutrition, Douai General Hospital, 59500, Douai, France
| | - Bulle Gaudrat
- Department of Nutrition, Arras General Hospital, Bd Besnier, 62000, Arras, France
- PSITEC Lab EA4072, University of Lille, 59000, Lille, France
| | - Severine Andrieux
- Department of Nutrition, Arras General Hospital, Bd Besnier, 62000, Arras, France
| | - Emmanuel Mulliez
- Department of Nutrition, Douai General Hospital, 59500, Douai, France
| | - Laurene Norberciak
- Delegation for Clinical Research and Innovation, Biostatistics Unit, Group of Hospitals of the Catholic Institute of Lille, 59000, Lille, France
| | - Kathleen Jacquez
- Clinical Research Unit, Arras General Hospital, 62000, Arras, France
| |
Collapse
|
5
|
Fernández-Murga ML, Gil-Ortiz F, Serrano-García L, Llombart-Cussac A. A New Paradigm in the Relationship between Gut Microbiota and Breast Cancer: β-glucuronidase Enzyme Identified as Potential Therapeutic Target. Pathogens 2023; 12:1086. [PMID: 37764894 PMCID: PMC10535898 DOI: 10.3390/pathogens12091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring malignancy and the second cancer-specific cause of mortality in women in developed countries. Over 70% of the total number of BCs are hormone receptor-positive (HR+), and elevated levels of circulating estrogen (E) in the blood have been shown to be a major risk factor for the development of HR+ BC. This is attributable to estrogen's contribution to increased cancer cell proliferation, stimulation of angiogenesis and metastasis, and resistance to therapy. The E metabolism-gut microbiome axis is functional, with subjacent individual variations in the levels of E. It is conceivable that the estrobolome (bacterial genes whose products metabolize E) may contribute to the risk of malignant neoplasms of hormonal origin, including BC, and may serve as a potential biomarker and target. It has been suggested that β-glucuronidase (GUS) enzymes of the intestinal microbiome participate in the strobolome. In addition, it has been proposed that bacterial GUS enzymes from the gastrointestinal tract participate in hormone BC. In this review, we discuss the latest knowledge about the role of the GUS enzyme in the pathogenesis of BC, focusing on (i) the microbiome and E metabolism; (ii) diet, estrobolome, and BC development; (iii) other activities of the bacterial GUS; and (iv) the new molecular targets for BC therapeutic application.
Collapse
Affiliation(s)
- M. Leonor Fernández-Murga
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | | | - Lucía Serrano-García
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| | - Antonio Llombart-Cussac
- Clinical and Molecular Oncology Laboratory, Hospital Arnau de Vilanova-Liria, FISABIO, 46015 Valencia, Spain; (L.S.-G.); (A.L.-C.)
| |
Collapse
|
6
|
Efremova I, Maslennikov R, Poluektova E, Vasilieva E, Zharikov Y, Suslov A, Letyagina Y, Kozlov E, Levshina A, Ivashkin V. Epidemiology of small intestinal bacterial overgrowth. World J Gastroenterol 2023; 29:3400-3421. [PMID: 37389240 PMCID: PMC10303511 DOI: 10.3748/wjg.v29.i22.3400] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is defined as an increase in the bacterial content of the small intestine above normal values. The presence of SIBO is detected in 33.8% of patients with gastroenterological complaints who underwent a breath test, and is significantly associated with smoking, bloating, abdominal pain, and anemia. Proton pump inhibitor therapy is a significant risk factor for SIBO. The risk of SIBO increases with age and does not depend on gender or race. SIBO complicates the course of a number of diseases and may be of pathogenetic significance in the development of their symptoms. SIBO is significantly associated with functional dyspepsia, irritable bowel syndrome, functional abdominal bloating, functional constipation, functional diarrhea, short bowel syndrome, chronic intestinal pseudo-obstruction, lactase deficiency, diverticular and celiac diseases, ulcerative colitis, Crohn’s disease, cirrhosis, metabolic-associated fatty liver disease (MAFLD), primary biliary cholangitis, gastroparesis, pancreatitis, cystic fibrosis, gallstone disease, diabetes, hypothyroidism, hyperlipidemia, acromegaly, multiple sclerosis, autism, Parkinson’s disease, systemic sclerosis, spondylarthropathy, fibromyalgia, asthma, heart failure, and other diseases. The development of SIBO is often associated with a slowdown in orocecal transit time that decreases the normal clearance of bacteria from the small intestine. The slowdown of this transit may be due to motor dysfunction of the intestine in diseases of the gut, autonomic diabetic polyneuropathy, and portal hypertension, or a decrease in the motor-stimulating influence of thyroid hormones. In a number of diseases, including cirrhosis, MAFLD, diabetes, and pancreatitis, an association was found between disease severity and the presence of SIBO. Further work on the effect of SIBO eradication on the condition and prognosis of patients with various diseases is required.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Ekaterina Vasilieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Yana Letyagina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
7
|
Gkolfakis P, Tziatzios G, Leite G, Papanikolaou IS, Xirouchakis E, Panayiotides IG, Karageorgos A, Millan MJ, Mathur R, Weitsman S, Dimitriadis GD, Giamarellos-Bourboulis EJ, Pimentel M, Triantafyllou K. Prevalence of Small Intestinal Bacterial Overgrowth Syndrome in Patients with Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: A Cross-Sectional Study. Microorganisms 2023; 11:723. [PMID: 36985296 PMCID: PMC10057935 DOI: 10.3390/microorganisms11030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a multifactorial, wide-spectrum liver disorder. Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the number and/or type of colonic bacteria in the upper gastrointestinal tract. SIBO, through energy salvage and induction of inflammation, may be a pathophysiological factor for NAFLD development and progression. AIM/METHODS Consecutive patients with histological, biochemical, or radiological diagnosis of any stage of NAFLD (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], cirrhosis) underwent upper gastrointestinal endoscopy. Duodenal fluid (2cc) was aspirated from the 3rd-4th part of duodenum into sterile containers. SIBO was defined as ≥103 aerobic colony-forming units (CFU)/mL of duodenal aspirate and/or the presence of colonic-type bacteria. Patients without any liver disease undergoing gastroscopy due to gastroesophageal reflux disease (GERD) comprised the healthy control (HC) group. Concentrations (pg/mL) of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and IL-6 were also measured in the duodenal fluid. The primary endpoint was to evaluate the prevalence of SIBO in NAFLD patients, while the comparison of SIBO prevalence among NAFLD patients and healthy controls was a secondary endpoint. RESULTS We enrolled 125 patients (51 NAFL, 27 NASH, 17 cirrhosis, and 30 HC) aged 54 ± 11.9 years and with a weight of 88.3 ± 19.6 kg (NAFLD vs. HC 90.7 ± 19.1 vs. 80.8 ± 19.6 kg, p = 0.02). Overall, SIBO was diagnosed in 23/125 (18.4%) patients, with Gram-negative bacteria being the predominant species (19/23; 82.6%). SIBO prevalence was higher in the NAFLD cohort compared to HC (22/95; 23.2% vs. 1/30; 3.3%, p = 0.014). Patients with NASH had higher SIBO prevalence (6/27; 22.2%) compared to NAFL individuals (8/51; 15.7%), but this difference did not reach statistical significance (p = 0.11). Patients with NASH-associated cirrhosis had a higher SIBO prevalence compared to patients with NAFL (8/17; 47.1% vs. 8/51; 15.7%, p = 0.02), while SIBO prevalence between patients with NASH-associated cirrhosis and NASH was not statistically different (8/17; 47.1% vs. 6/27; 22.2%, p = 0.11). Mean concentration of TNF-α, IL-1β, and IL-6 did not differ among the different groups. CONCLUSION The prevalence of SIBO is significantly higher in a cohort of patients with NAFLD compared to healthy controls. Moreover, SIBO is more prevalent in patients with NASH-associated cirrhosis compared to patients with NAFL.
Collapse
Affiliation(s)
- Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tziatzios
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ioannis S Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical Palaio Faliron General Hospital, 17562 Palaio Faliron, Greece
| | - Ioannis G Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, 124622 Athens, Greece
| | - Athanasios Karageorgos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Jesus Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - George D Dimitriadis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|