1
|
Cai F, Zhang J, Gao H, Shen H. Tumor microenvironment and CAR-T cell immunotherapy in B-cell lymphoma. Eur J Haematol 2024; 112:223-235. [PMID: 37706523 DOI: 10.1111/ejh.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric receptor antigen T cell (CAR-T cell) therapy has demonstrated effectiveness and therapeutic potential in the immunotherapy of hematological malignancies, representing a promising breakthrough in cancer treatment. Despite the efficacy of CAR-T cell therapy in B-cell lymphoma, response variability, resistance, and side effects remain persistent challenges. The tumor microenvironment (TME) plays an intricate role in CAR-T cell therapy of B-cell lymphoma. The TME is a complex and dynamic environment that includes various cell types, cytokines, and extracellular matrix components, all of which can influence CAR-T cell function and behavior. This review discusses the design principles of CAR-T cells, TME in B-cell lymphoma, and the mechanisms by which TME influences CAR-T cell function. We discuss emerging strategies aimed at modulating the TME, targeting immunosuppressive cells, overcoming inhibitory signaling, and improving CAR-T cell infiltration and persistence. Therefore, these processes enhance the efficacy of CAR-T cell therapy and improve patient outcomes in B-cell lymphoma. Further research will be needed to investigate the molecular and cellular events that occur post-infusion, including changes in TME composition, immune cell interactions, cytokine signaling, and potential resistance mechanisms. Understanding these processes will contribute to the development of more effective CAR-T cell therapies and strategies to mitigate treatment-related toxicities.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfeng Zhang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Gao
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Joint Research Center for Immune Landscape and Precision Medicine in Children, Binjiang Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Cai F, Peng Z, Xu H, Gao H, Liao C, Xu X, Guo X, Gu W, Zhu K, Shu Q, Shen H. Immune microenvironment associated with the severity of Langerhans cell histiocytosis in children. Cytokine 2023; 171:156378. [PMID: 37748334 DOI: 10.1016/j.cyto.2023.156378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The aim of this study is to investigate the clinical potential of immune microenvironment in peripheral blood for the severity and therapeutic efficacy of Langerhans cell histiocytosis (LCH). A total of 200 newly diagnosed children with LCH during 10 years was enrolled for analysis in this study. Peripheral blood samples were acquired from patients before treatment in our hospital and immune indicators were detected by a four-color flow cytometer. The levels of CD3 + CD8 + T cell, CD3 + CD4 + HLA-DR + T cell, CD3 + CD8 + HLA-DR + T cell, IL-4, IL-6, IL-10 and IFN-γ in peripheral blood were markedly elevated in LCH patients vs. healthy controls. Patients with multiple system with risk organ involvement (MS-RO + ) exhibited higher levels in IL-6, IL-10 and IFN-γ, CD3 + CD4 + HLA-DR + T cell and CD3 + CD8 + HLA-DR + T cell, compared to those in patients without risk organ involvement (RO-). Patients who responded effectively to initial chemotherapy showed significantly lower levels of IL-4, IL-10, IFN-γ, CD3 + CD4 + HLA-DR + T cell and CD3 + CD8 + HLA-DR + T cell in peripheral blood, compared to those in patients who did not respond to initial chemotherapy. Furthermore, univariate analyses were performed that the higher levels of CD3 + CD4 + HLA-DR + T cells, CD3 + CD8 + HLA-DR + T cells and IL-10 in peripheral blood were related to non-response in LCH after initial chemotherapy. Immune microenvironment in peripheral blood may be associated with the severity and treatment response of LCH. The levels of CD3 + CD4 + HLA-DR + T cells, CD3 + CD8 + HLA-DR + T cells and IL-10 may be biomarkers to predict treatment response of LCH patients.
Collapse
Affiliation(s)
- Fengqing Cai
- Department of clinical laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhaoyang Peng
- Department of clinical laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Xu
- Department of clinical laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Gao
- Department of clinical laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan Liao
- Department of hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojun Xu
- Department of hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoping Guo
- Department of hematology-oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Joint Research Center for Immune Landscape and Precision Medicine in Children, Binjiang Institute of Zhejiang University, China.
| | - Hongqiang Shen
- Department of clinical laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Joint Research Center for Immune Landscape and Precision Medicine in Children, Binjiang Institute of Zhejiang University, China.
| |
Collapse
|
3
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Luedde T, Loosen SH. Peripheral blood CD3+HLADR+ cells and associated gut microbiome species predict response and overall survival to immune checkpoint blockade. Front Immunol 2023; 14:1206953. [PMID: 37705980 PMCID: PMC10495594 DOI: 10.3389/fimmu.2023.1206953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023] Open
Abstract
Background The search for biomarkers to identify ideal candidates for immune checkpoint inhibitor (ICI) therapy is fundamental. In this study, we analyze peripheral blood CD3+HLADR+ cells (activated T-cells) as a novel biomarker for ICI therapy and how its association to certain gut microbiome species can indicate individual treatment outcomes. Methods Flow cytometry analysis of peripheral mononuclear blood cells (PBMCs) was performed on n=70 patients undergoing ICI therapy for solid malignancies to quantify HLA-DR on circulating CD3+ cells. 16s-rRNA sequencing of stool samples was performed on n=37 patients to assess relative abundance of gut microbiota. Results Patients with a higher frequency of CD3+HLADR+ cells before treatment initiation showed a significantly reduced tumor response and overall survival (OS), a worst response and experienced less toxicities to ICI therapy. As such, patients with a frequency of CD3+HLADR+ cells above an ideal cut-off value of 18.55% had a median OS of only 132 days compared to 569 days for patients below. Patients with increasing CD3+HLADR+ cell counts during therapy had a significantly improved OS. An immune signature score comprising CD3+HLADR+ cells and the neutrophil-lymphocyte ratio (NLR) was highly significant for predicting OS before and during therapy. When allied to the relative abundance of microbiota from the Burkholderiales order and the species Bacteroides vulgatus, two immune-microbial scores revealed a promising predictive and prognostic power. Conclusion We identify the frequencies and dynamics of CD3+HLADR+ cells as an easily accessible prognostic marker to predict outcome to ICIs, and how these could be associated with immune modulating microbiome species. Two unprecedented immune-microbial scores comprising CD3+HLADR+, NLR and relative abundance of gut bacteria from the Burkhorderiales order or Bacteroides vulgatus species could accurately predict OS to immune checkpoint blockade.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim H. Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| |
Collapse
|