1
|
Blanco-Verea A, Carracedo Á, Brion M. Challenges of genetics in the diagnosis of sudden cardiac death. Interest of forensic and legal medicine. Med Clin (Barc) 2024:S0025-7753(24)00614-6. [PMID: 39562230 DOI: 10.1016/j.medcli.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Sudden cardiac death is the leading cause of death in developed countries and a small but significant number of cases cannot be explained after a thorough autopsy process. Cases of sudden cardiac death in people under 40years of age are mainly due to structural heart disease or cardiomyopathies and arrhythmogenic diseases or channelopathies. In these cases, the search for associated genetic factors through molecular autopsy may help to find the cause of unexplained sudden cardiac death, through genetic diagnosis of previously undiagnosed channelopathies or cardiomyopathies. The finding of genetic variants classified as pathogenic associated with cardiac pathology would conclude the autopsy result and provide the possibility of genetic screening in other family members.
Collapse
Affiliation(s)
- Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, España; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España.
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España; Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, A Coruña, España
| | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, A Coruña, España; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, España; Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, España
| |
Collapse
|
2
|
Kwok SY, Ho S, Shih FY, Yeung PK, Cheng SSW, Poon WM, Lo IFM, Luk HM. Molecular autopsy in Chinese sudden cardiac death in the young. Am J Med Genet A 2024; 194:e63797. [PMID: 38958565 DOI: 10.1002/ajmg.a.63797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Inherited cardiovascular conditions are significant causes of sudden cardiac death in the young (SCDY), making their investigation using molecular autopsy and prevention a public health priority. However, the molecular autopsy data in Chinese population is lacking. The 5-year result (2017-2021) of molecular autopsy services provided for victims of SCDY (age 1-40 years) was reviewed. The outcome of family cascade genetic screening and clinical evaluation was reviewed. A literature review of case series reporting results of molecular autopsy on SCDY in 2016-2023 was conducted. Among the 41 decedents, 11 were found to carry 13 sudden cardiac death (SCD)-causative genetic variants. Likely pathogenic (LP) variants were identified in the DSP, TPM1, TTN, and SCN5A genes. Cascade genetic testing identified four family members with LP variants. One family member with familial TPM1 variant was found to have hypertrophic cardiomyopathy upon clinical evaluation. This study provided insight into the genetic profile of molecular autopsy in a Chinese cohort of SCDY. The detection of important SCD-causative variants through molecular autopsy has facilitated family cascade screening by targeted genetic testing and clinical evaluation of at-risk family members. A literature review of the current landscape of molecular autopsy in the investigation of SCDY was conducted.
Collapse
Affiliation(s)
- Sit-Yee Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Stephanie Ho
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Fong-Ying Shih
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Pak-Kwan Yeung
- Department of Health, Forensic Pathology Service, Kowloon, Hong Kong SAR
| | - Shirley S W Cheng
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Wai-Ming Poon
- Department of Health, Forensic Pathology Service, Kowloon, Hong Kong SAR
| | - Ivan F M Lo
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Kowloon, Hong Kong SAR
| |
Collapse
|
3
|
Cazzato F, Coll M, Grassi S, Fernàndez-Falgueras A, Nogué-Navarro L, Iglesias A, Castellà J, Oliva A, Brugada R. Investigating cardiac genetic background in sudden infant death syndrome (SIDS). Int J Legal Med 2024; 138:2229-2237. [PMID: 38849547 PMCID: PMC11490465 DOI: 10.1007/s00414-024-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Sudden infant death syndrome (SIDS) is still the leading cause of death for newborns in developed countries. The pathophysiological mechanisms have not been fully clarified, but in some of SIDS cases variants of genes associated with inherited cardiac conditions are found. In this study, an analysis of SCD-related genes was performed to determine the prevalence of rare pathogenic (P) or likely pathogenic (LP) variants that could provide an unambiguous explanation for the fatal event. A cohort of 76 SIDS cases underwent Next-Generation Sequencing (NGS) analysis with a custom panel of SCD-related genes. Rare variants were classified according to the guidelines provided by the American College of Medical Genetics and Genomics (ACMG) and the specifications of the ClinGen association. Post-mortem genetic testing identified 50 (65.8%) carriers of at least one variant in SCD genes. 104 rare genetic variants were found, 65.4% in genes encoding structural proteins. Only 4 out of 76 cases (5.3%) hosted at least a P or LP variant found in genes with structural or structural/arrhythmogenic functions (SLC22A5, SCN5A, MYL3and TTN). 99 variants were classified as of uncertain significance (VUS). The difference in the distribution of variants between gene groups by function was not statistically significant (chi square, p = 0,219). Despite this, most of the variants concerned structural genes that were supposed to have a close interaction with ion channels, thus providing an explanation for the arrhythmic event. Segregation analysis, reclassification of VUS variants and identification of new associated genes could clarify the implications of the current findings.
Collapse
Affiliation(s)
- Francesca Cazzato
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Mònica Coll
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, 17190, Salt, Spain
| | - Simone Grassi
- Department of Health Sciences, Section of Forensic Medical Sciences, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | | | - Laia Nogué-Navarro
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic 08500, Can Baumann, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, 17190, Salt, Spain
| | - Josep Castellà
- Forensic Pathology Service, Institut Medicina Legal Ciències Mèdiques Catalunya, Barcelona, Spain
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Ramon Brugada
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, 17190, Salt, Spain
- Cardiology Department, Hospital Universitari Doctor Josep Trueta, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003, Girona, Spain
| |
Collapse
|
4
|
Kling D, Adolfsson E, Gréen H, Gréen A. The power of hybridization capture - Illustrated using an expanded gene panel on 100 post mortem samples, focusing on sudden unexplained death. Forensic Sci Int Genet 2024; 74:103160. [PMID: 39437498 DOI: 10.1016/j.fsigen.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Sudden unexpected death (SUD) is an unexpected event that in many cases are caused by diseases with an underlying genetic background. Forensic molecular autopsy is an approach that has gained wide-spread attention, in part explained by the rapid progress of DNA sequencing techniques. The approach leverages genetic data in combination with medical autopsy findings in post-mortem samples to explore a potential underlying genetic cause of death. Traditional forensic approaches to molecular autopsy focus on a small panel of genes, say <200 genes, with strong association to heart conditions whereas clinical genetics tend to capture entire exomes while subsequently selecting targeted panels bioinformatically. The drop in price and the increased throughput has promoted wider exome sequencing as a viable method to discover genetic variants. We explore a targeted gene panel consisting of 2422 genes, selected based on their broad association to sudden unexplained death. A hybridization capture approach from Twist Bioscience based on double stranded DNA probes was used to target exons of the included genes. We selected and sequenced a total of 98 post-mortem samples from historical forensic autopsy cases where the cause of death could not be unambiguously determined based on medical findings and that had a previous negative molecular autopsy. In the current study, we focus on the performance of the hybridization capture technology on a 2422 gene panel and explore metrics related to sequencing success using a mid-end NextSeq 550 as well as a MiSeq FGx platform. With the latter we demonstrate that our sequence data benefits from 2×300 bp sequencing increasing coverage, in particular, for difficult regions where shadow coverage, i.e. regions outside the probes, are utilized. The results further illustrate a highly uniform capture across the panel of genes (mean fold80=1.5), in turn minimizing excessive sequencing costs to reach sufficient coverage, i.e. 20X. We outline a stepwise procedure to select genes associated with SUD through virtual bioinformatical panels extracting tier of genes with increasing strength of association to SUD. We propose some prioritization strategies to filter variants with highest potential and show that the number of high priority genetic variant requiring manual inspections is few (0-3 for all tiers of genes) when all filters are applied.
Collapse
Affiliation(s)
- Daniel Kling
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
| | - Emma Adolfsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden; Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Gréen
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Strenja I, Dadić-Hero E, Perković M, Šoša I. Fentanyl and Sudden Death-A Postmortem Perspective for Diagnosing and Predicting Risk. Diagnostics (Basel) 2024; 14:1995. [PMID: 39272779 PMCID: PMC11394624 DOI: 10.3390/diagnostics14171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Sudden, unexpected deaths are extremely difficult for families, especially when the victim is a child. Most sudden deaths occur due to cardiovascular issues, and a smaller number (approximately one-quarter) are attributed to other causes, such as epilepsy. The medicinal and non-medicinal use of the synthetic opioid fentanyl, which can cause breathing problems, is frequently involved in these deaths. It is also being found more often in autopsies of sudden death cases, and the number of overdose deaths from illicit drugs containing fentanyl is increasing. There are cases in which it is mixed with other drugs. A gene known as the KCNH2 gene or human ether-a-go-go-related gene (hERG), involved in the heart's electrical activity, can be related to abnormal heart rhythms. This gene, along with others, may play a role in sudden deaths related to fentanyl use. In response, we have examined the scientific literature on genetic variations in the KCNH2 gene that can cause sudden death, the impact of fentanyl on this process, and the potential benefits of genetic testing for the victims to offer genetic counseling for their family members.
Collapse
Affiliation(s)
- Ines Strenja
- Department of Neurology, University Hospital Centre Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Elizabeta Dadić-Hero
- Department of Psychiatry, University Hospital Centre Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Manuela Perković
- Department of Pathology and Cytology, Pula General Hospital, 52000 Pula, Croatia
| | - Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Sarquella-Brugada G, Martínez-Barrios E, Cesar S, Toro R, Cruzalegui J, Greco A, Díez-Escuté N, Cerralbo P, Chipa F, Arbelo E, Diez-López C, Grazioli G, Balderrábano N, Campuzano O. A narrative review of inherited arrhythmogenic syndromes in young population: role of genetic diagnosis in exercise recommendations. BMJ Open Sport Exerc Med 2024; 10:e001852. [PMID: 38975025 PMCID: PMC11227825 DOI: 10.1136/bmjsem-2023-001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Sudden cardiac death is a rare but socially devastating event, especially if occurs in young people. Usually, this unexpected lethal event occurs during or just after exercise. One of the leading causes of sudden cardiac death is inherited arrhythmogenic syndromes, a group of genetic entities characterised by incomplete penetrance and variable expressivity. Exercise can be the trigger for malignant arrhythmias and even syncope in population with a genetic predisposition, being sudden cardiac death as the first symptom. Due to genetic origin, family members must be clinically assessed and genetically analysed after diagnosis or suspected diagnosis of a cardiac channelopathy. Early identification and adoption of personalised preventive measures is crucial to reduce risk of arrhythmias and avoid new lethal episodes. Despite exercise being recommended by the global population due to its beneficial effects on health, particular recommendations for these patients should be adopted considering the sport practised, level of demand, age, gender, arrhythmogenic syndrome diagnosed but also genetic diagnosis. Our review focuses on the role of genetic background in sudden cardiac death during exercise in child and young population.
Collapse
Affiliation(s)
- Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
| | - Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Rocío Toro
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - José Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Andrea Greco
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Nuria Díez-Escuté
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Patricia Cerralbo
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Fredy Chipa
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| | - Elena Arbelo
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carles Diez-López
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL) Hospitalet de Llobregat, Barcelona, Spain
- Advanced Heart Failure and Heart Transplant Unit, Department of Cardiology, Bellvitge University Hospital Hospitalet de Llobregat, Barcelona, Spain
| | | | - Norma Balderrábano
- Cardiology Department, Children Hospital of Mexico Federico Gómez, México D.F, Mexico
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdiques de Girona (IDIBGI), Salt-Girona, Spain
| |
Collapse
|
7
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
8
|
Skrypnyk C, AlHarmi R. Molecular autopsy by proxy: relevance for genetic counseling in rare genetic disorders. Front Genet 2024; 15:1400295. [PMID: 38859940 PMCID: PMC11163115 DOI: 10.3389/fgene.2024.1400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Rare genetic disorders may result in death before a definitive clinical diagnosis is established. Aim This study aims to outline the processes and challenges in managing, from a genetic perspective, couples who lost children affected by rare genetic disorders. Results Six couples who experienced child loss due to rare genetic disorders, seen by the primary author at genetic evaluation and counseling sessions, were retrospectively analyzed. Four out of 6 couples reported consanguinity. Exome and genome sequencing were performed for the parents. Carrier status of two rare lethal metabolic disorders was confirmed in one consanguineous couple. Three couples were carriers of 3 other rare diseases. Variants of LYST, MPV17, HEXB, ITGB4, CD3E, ASPM, TK2, COL11A2, and LAMB3 genes were identified. Six out of 10 were pathogenic variants, out of which 4 correlated with the demised children's phenotypes. One couple was negative for pathogenic variants. The last couple did not undergo genetic testing since they were beyond the fertile window. Conclusion Appropriate parental genetic evaluation and counseling are mandatory for selecting the right genetic test to certify the diagnosis postmortem, by virtue of molecular autopsy by proxy. Clarifying a rare disorder diagnosis can help couples to avoid recurrence and plan early for their next pregnancies.
Collapse
Affiliation(s)
- Cristina Skrypnyk
- Assistant Professor, Molecular Genetics, Princess Al-Jawhara Al-Ibrahim Center for Molecular Medicine, Genetics, and Inherited Disorders and Molecular Medicine Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Consultant Medical Geneticist, University Medical Clinics, Manama, Bahrain
| | - Rawan AlHarmi
- Research Associate, Regenerative Medicine Unit, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
9
|
Salzillo C, Sansone V, Napolitano F. Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Autopsy. Curr Issues Mol Biol 2024; 46:3313-3327. [PMID: 38666937 PMCID: PMC11049009 DOI: 10.3390/cimb46040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sudden cardiac death (SCD) is defined as unexpected death due to a cardiac cause that occurs rapidly. Despite the identification of prevention strategies, SCD remains a serious public health problem worldwide, accounting for 15-20% of all deaths, and is therefore a challenge for modern medicine, especially when it affects young people. Sudden cardiac death in young people affects the population aged ≤ 35 years, including athletes and non-athletes, and it is due to various hereditary and non-hereditary causes. After an autopsy, if the cause remains unknown, it is called sudden unexplained death, often attributable to genetic causes. In these cases, molecular autopsy-post-mortem genetic testing-is essential to facilitate diagnostic and therapeutic pathways and/or the monitoring of family members of the cases. This review aims to elaborate on cardiac disorders marked by genetic mutations, necessitating the post-mortem genetic investigation of the deceased for an accurate diagnosis in order to facilitate informed genetic counseling and to implement preventive strategies for family members of the cases.
Collapse
Affiliation(s)
| | | | - Francesco Napolitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy; (C.S.); (V.S.)
| |
Collapse
|
10
|
Kauferstein S, Beckmann BM. [Postmortem genetic analysis following sudden cardiac death : Background, approach, and future]. Herzschrittmacherther Elektrophysiol 2024; 35:31-38. [PMID: 38197940 DOI: 10.1007/s00399-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Sudden cardiac death (SCD) is defined as an unexpected, nontraumatic death with a possible cardiac or unknown cause. The lowest incidence is observed in infancy and childhood (1 per 100,000), and the incidence is approximately 50 per 100,000 in the middle-aged population, reaching a plateau around the age of 80 (200 per 100,000). While most SCD cases occur in older people with coronary artery disease, there is a predominance of monogenetic and polygenetic diseases in the young. METHODS Postmortem genetic analysis (molecular autopsy) using next-generation sequencing reveals a definite pathogenic genetic alteration, which can explain SCD of young patients in near 20% of the cases. Hence, postmortem genetic analysis has become an important tool to unravel the inheritable cause of death. Furthermore, early identification of a pathogenic genetic sequence variant in the deceased is crucial to reduce risk in relatives due to preventive personalized measures. RESULTS AND CONCLUSION Postmortem genetic analysis forms together with the clinical assessment the basis for early identification of at-risk relatives. A new guideline for the management of ventricular arrhythmias and prevention of sudden death was recently published by the European Society of Cardiology. The new recommendations give genetic testing, also in deceased patients a much higher priority reflecting increasing relevance of genetic testing for diagnostic evaluation, risk stratification and prevention.
Collapse
Affiliation(s)
- Silke Kauferstein
- Institut für Rechtsmedizin, Zentrum für plötzlichen Herztod und familiäre Arrhythmiesyndrome, Universitätsklinikum Frankfurt, Kennedyallee 104, 60590, Frankfurt, Deutschland.
- Partner Site Rhein-Main, DZHK (German Centre for Cardiovascular Research), Frankfurt, Deutschland.
| | - Britt-Maria Beckmann
- Institut für Rechtsmedizin, Zentrum für plötzlichen Herztod und familiäre Arrhythmiesyndrome, Universitätsklinikum Frankfurt, Kennedyallee 104, 60590, Frankfurt, Deutschland
| |
Collapse
|
11
|
Abramochkin D, Li B, Zhang H, Kravchuk E, Nesterova T, Glukhov G, Shestak A, Zaklyazminskaya E, Sokolova OS. Novel Gain-of-Function Mutation in the Kv11.1 Channel Found in the Patient with Brugada Syndrome and Mild QTc Shortening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:543-552. [PMID: 38648771 DOI: 10.1134/s000629792403012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.
Collapse
Affiliation(s)
- Denis Abramochkin
- Shenzhen MSU-BIT University, Shenzhen, China.
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Bowen Li
- Shenzhen MSU-BIT University, Shenzhen, China.
| | - Han Zhang
- Shenzhen MSU-BIT University, Shenzhen, China.
| | | | - Tatiana Nesterova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620075, Russia
| | - Grigory Glukhov
- Shenzhen MSU-BIT University, Shenzhen, China.
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Anna Shestak
- Petrovsky National Research Center of Surgery, Moscow, 119991, Russia.
| | | | - Olga S Sokolova
- Shenzhen MSU-BIT University, Shenzhen, China.
- Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
12
|
Mariani MV, Pierucci N, Fanisio F, Laviola D, Silvetti G, Piro A, La Fazia VM, Chimenti C, Rebecchi M, Drago F, Miraldi F, Natale A, Vizza CD, Lavalle C. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:94. [PMID: 38256355 PMCID: PMC10819657 DOI: 10.3390/medicina60010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Pediatric cardiomyopathies (CMs) and electrical diseases constitute a heterogeneous spectrum of disorders distinguished by structural and electrical abnormalities in the heart muscle, attributed to a genetic variant. They rank among the main causes of morbidity and mortality in the pediatric population, with an annual incidence of 1.1-1.5 per 100,000 in children under the age of 18. The most common conditions are dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Despite great enthusiasm for research in this field, studies in this population are still limited, and the management and treatment often follow adult recommendations, which have significantly more data on treatment benefits. Although adult and pediatric cardiac diseases share similar morphological and clinical manifestations, their outcomes significantly differ. This review summarizes the latest evidence on genetics, clinical characteristics, management, and updated outcomes of primary pediatric CMs and electrical diseases, including DCM, HCM, arrhythmogenic right ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), and short QT syndrome (SQTS).
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Francesca Fanisio
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Vincenzo Mirco La Fazia
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy;
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Andrea Natale
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| |
Collapse
|
13
|
Yamamoto T, Emoto Y, Murase T, Umehara T, Miura A, Nishiguchi M, Ikematsu K, Nishio H. Molecular autopsy for sudden death in Japan. J Toxicol Pathol 2024; 37:1-10. [PMID: 38283375 PMCID: PMC10811381 DOI: 10.1293/tox.2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 01/30/2024] Open
Abstract
Japan has various death investigation systems; however, external examinations, postmortem computed tomography, macroscopic examinations, and microscopic examinations are performed regardless of the system used. These examinations can reveal morphological abnormalities, whereas the cause of death in cases with non-morphological abnormalities can be detected through additional examinations. Molecular autopsy and postmortem genetic analyses are important additional examinations. They are capable of detecting inherited arrhythmias or inherited metabolic diseases, which are representative non-morphological disorders that cause sudden death, especially in infants and young people. In this review, we introduce molecular autopsy reports from Japan and describe our experience with representative cases. The relationships between drug-related deaths and genetic variants are also reviewed. Based on the presented information, molecular autopsy is expected to be used as routine examinations in death investigations because they can provide information to save new lives.
Collapse
Affiliation(s)
- Takuma Yamamoto
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Yuko Emoto
- Department of Legal Medicine, Kansai Medical University,
2-5-1 Shinmachi, Hirakata-shi, Osaka 573-1010, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Takahiro Umehara
- Department of Forensic Medicine, School of Medicine,
University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku,
Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Minori Nishiguchi
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| |
Collapse
|
14
|
Foster J. The "autopsy" enigma: etymology, related terms and unambiguous alternatives. Forensic Sci Med Pathol 2023:10.1007/s12024-023-00729-9. [PMID: 37880559 DOI: 10.1007/s12024-023-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The concerted use of Greek-derived medical terms in the present day allows us to facilitate effective communication while honouring the historic roots of Western medicine. The word autopsy derives from its third century B.C. Hellenistic Greek etymon αὐτοψία ("to see for oneself"), later borrowed into Neo-Latin as autopsia and Middle French as autopsie. Throughout its etymological journey, autopsie underwent semantic narrowing from the passive sense "self-inspection of something without touching", to a purposeful action by an operator performing "an examination of the human body itself", to specifically "dissection of a dead human body". These curious turning points for the meaning of autopsie produced an auto-antonym: the same word now has multiple meanings, of which one is the reverse of another. The French autopsie used in the latter sense predates that documented for the English autopsy (attested 1829). Since the early nineteenth century, attempts were made to remedy the discrepancy between conflicting senses either by adding determining adjectives to the existing noun, or by substituting it with another word altogether. This review explores the etymological journey of autopsy, considers which related terms have been popularised throughout history, introduces the concept of lexical ambiguity and suggests unambiguous English compound (necropsy and necrotomy) and Latin-derived (non-invasive and invasive postmortem examination) alternatives to satisfy a recent appetite for clarity in international professional and next-of-kin communication.
Collapse
Affiliation(s)
- Jacob Foster
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
15
|
Bernini Di Michele A, Onofri V, Pesaresi M, Turchi C. The Role of miRNA Expression Profile in Sudden Cardiac Death Cases. Genes (Basel) 2023; 14:1954. [PMID: 37895303 PMCID: PMC10606010 DOI: 10.3390/genes14101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden cardiac death (SCD) is one of the leading causes of death in the world and for this reason it has attracted the attention of numerous researchers in the field of legal medicine. It is not easy to determine the cause in a SCD case and the available methods used for diagnosis cannot always give an exhaustive answer. In addition, the molecular analysis of genes does not lead to a clear conclusion, but it could be interesting to focus attention on the expression level of miRNAs, a class of non-coding RNA of about 22 nucleotides. The role of miRNAs is to regulate the gene expression through complementary binding to 3'-untraslated regions of miRNAs, leading to the inhibition of translation or to mRNA degradation. In recent years, several studies were performed with the aim of exploring the use of these molecules as biomarkers for SCD cases, and to also distinguish the causes that lead to cardiac death. In this review, we summarize experiments, evidence, and results of different studies on the implication of miRNAs in SCD cases. We discuss the different biological starting materials with their respective advantages and disadvantages, studying miRNA expression on tissue (fresh-frozen tissue and FFPE tissue), circulating cell-free miRNAs in blood of patients affected by cardiac disease at high risk of SCD, and exosomal miRNAs analyzed from serum of people who died from SCD.
Collapse
Affiliation(s)
- Alessia Bernini Di Michele
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Valerio Onofri
- Legal Medicine Unit, AOU Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy;
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Chiara Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| |
Collapse
|