1
|
Mokhtari F, Nam HY, Ruhparwar A, Raad R, Razal JM, Varley RJ, Wang CH, Foroughi J. Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices. J Mater Chem B 2024; 12:9727-9739. [PMID: 39224031 DOI: 10.1039/d4tb01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-performance biocompatible composite materials are gaining attention for their potential in various fields such as neural tissue scaffolds, bio-implantable devices, energy harvesting, and biomechanical sensors. However, these devices currently face limitations in miniaturization, finite battery lifetimes, fabrication complexity, and rigidity. Hence, there is an urgent need for smart and self-powering soft devices that are easily deployable under physiological conditions. Herein, we present a straightforward and efficient fabrication technique for creating flexible/stretchable fiber-based piezoelectric structures using a hybrid nanocomposite of polyvinylidene fluoride (PVDF), reduced graphene oxide (rGO), and barium-titanium oxide (BT). These nanocomposite fibers are capable of converting biomechanical stimuli into electrical signals across various structural designs (knit, braid, woven, and coil). It was found that a stretchable configuration with higher output voltage (4 V) and a power density (87 μW cm-3) was obtained using nanocomposite coiled fibers or knitted fibers, which are ideal candidates for real-time monitoring of physiological signals. These structures are being proposed for practical transition to the development of the next generation of fiber-based biomedical devices. The cytotoxicity and cytocompatibility of nanocomposite fibers were tested on human mesenchymal stromal cells. The obtained results suggest that the developed fibers can be utilized for smart scaffolds and bio-implantable devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Hui Yin Nam
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Arjang Ruhparwar
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
| | - Raad Raad
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Javad Foroughi
- Department of Cardiothoracic Transplantation and Vascular Surgery Hannover Medical School Carl-Neuberg-Str., 130625 Hannover, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong Northfields Ave, NSW, Wollongong, NSW 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Nascimento ATD, Mendes AX, Duchi S, Duc D, Aguilar LC, Quigley AF, Kapsa RMI, Nisbet DR, Stoddart PR, Silva SM, Moulton SE. Wired for Success: Probing the Effect of Tissue-Engineered Neural Interface Substrates on Cell Viability. ACS Biomater Sci Eng 2024; 10:3775-3791. [PMID: 38722625 DOI: 10.1021/acsbiomaterials.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre X Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Daniela Duc
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Lilith C Aguilar
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - David R Nisbet
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saimon M Silva
- Department of Chemistry and Biochemistry, La Trobe Institute for Molecular Science, The Biomedical and Environmental Sensor Technology Research Centre, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
3
|
Kumari J, Paul O, Verdellen L, Berking B, Chen W, Gerrits L, Postma J, Wagener FADTG, Kouwer PHJ. Conductive Polyisocyanide Hydrogels Inhibit Fibrosis and Promote Myogenesis. ACS APPLIED BIO MATERIALS 2024; 7:3258-3270. [PMID: 38593039 PMCID: PMC11110048 DOI: 10.1021/acsabm.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Odile Paul
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lisa Verdellen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Bela Berking
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wen Chen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lotte Gerrits
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jelle Postma
- Department
of General Instrumentation, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Frank A. D. T. G. Wagener
- Department
of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
4
|
Liu L, Chen M, Zhang J, Li H, Li Z, Song J, Ma S, Wang Y, Lou X. Oriented polyaniline/poly-l-lactic acid/gelatin nanofiber scaffolds promote outgrowth of spiral ganglion neurons. J Biomed Mater Res A 2024; 112:700-709. [PMID: 37962013 DOI: 10.1002/jbm.a.37649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Sensorineural hearing loss (SNHL) is caused by the loss of sensory hair cells (HCs) and/or connected spiral ganglion neurons (SGNs). The current clinical conventional treatment for SNHL is cochlear implantation (CI). The principle of CI is to bypass degenerated auditory HCs and directly electrically stimulate SGNs to restore hearing. However, the effectiveness of CI is limited when SGNs are severely damaged. In the present study, oriented nanofiber scaffolds were fabricated using electrospinning technology to mimic the SGN spatial microenvironment in the inner ear. Meanwhile, different proportions of polyaniline (PANI), poly-l-lactide (PLLA), gelatin (Gel) were composited to mimic the composition and mechanical properties of auditory basement membrane. The effects of oriented PANI/PLLA/Gel biomimetic nanofiber scaffolds for neurite outgrowth were analyzed. The results showed the SGNs grew in an orientation along the fiber direction, and the length of the protrusions increased significantly on PANI/PLLA/Gel scaffold groups. The 2% PANI/PLLA/Gel group showed best effects for promoting SGN adhesion and nerve fiber extension. In conclusion, the biomimetic oriented nanofiber scaffolds can simulate the microenvironment of SGNs as well as promote neurite outgrowth in vitro, which may provide a feasible research idea for SGN regeneration and even therapeutic treatments of SNHL in future.
Collapse
Affiliation(s)
- Li Liu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Mengyu Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Haobo Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Zhaoxia Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jianhao Song
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Shutao Ma
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yingjie Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
5
|
Santhanam S, Chen C, Oh B, McConnell KW, Azadian MM, Patel JJ, Gardner EE, Tanabe Y, Poon ASY, George PM. Wirelessly Powered-Electrically Conductive Polymer System for Stem Cell Enhanced Stroke Recovery. ADVANCED ELECTRONIC MATERIALS 2023; 9:2300369. [PMID: 38045756 PMCID: PMC10691593 DOI: 10.1002/aelm.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 12/05/2023]
Abstract
Effective stroke recovery therapeutics remain limited. Stem cell therapies have yielded promising results, but the harsh ischemic environment of the post-stroke brain reduces their therapeutic potential. Previously, we developed a conductive polymer scaffold system that enabled stem cell delivery with simultaneous electrical modulation of the cells and surrounding neural environment. This wired polymer scaffold proved efficacious in optimizing ideal conditions for stem cell mediated motor improvements in a rodent model of stroke. To further enable preclinical studies and enhance translational potential, we identified a method to improve this system by eliminating its dependence upon a tethered power source. We have herein developed a wirelessly powered, electrically conductive polymer system that eases therapeutic application and enables full mobility. As a proof of concept, we demonstrate that the wirelessly powered scaffold is able to stimulate neural stem cells in vitro, as well as in vivo in a rodent model of stroke. This system modulates the stroke microenvironment and increases the production of endogenous stem cells. In summation, this novel, wirelessly powered conductive scaffold can serve as a mobile platform for a wide variety of therapeutics involving electrical stimulation.
Collapse
Affiliation(s)
- Sruthi Santhanam
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Kelly W. McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Matine M. Azadian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Jainith J. Patel
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Emily E. Gardner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Yuji Tanabe
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Ada S. Y. Poon
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Paul M. George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Liang S, Xu W, Hu L, Yrjänä V, Wang Q, Rosqvist E, Wang L, Peltonen J, Rosenholm JM, Xu C, Latonen RM, Wang X. Aqueous Processable One-Dimensional Polypyrrole Nanostructured by Lignocellulose Nanofibril: A Conductive Interfacing Biomaterial. Biomacromolecules 2023; 24:3819-3834. [PMID: 37437256 PMCID: PMC10428162 DOI: 10.1021/acs.biomac.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.
Collapse
Affiliation(s)
- Shujun Liang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Wenyang Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Liqiu Hu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Ville Yrjänä
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Qingbo Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Emil Rosqvist
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Luyao Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jouko Peltonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| | - Chunlin Xu
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
| | - Rose-Marie Latonen
- Laboratory
of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Xiaoju Wang
- Laboratory
of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi Unversity, Henrikinkatu 2, Turku FI-20500, Finland
- Pharmaceutical
Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
| |
Collapse
|
7
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Garrudo FFF, Linhardt RJ, Ferreira FC, Morgado J. Designing Electrical Stimulation Platforms for Neural Cell Cultivation Using Poly(aniline): Camphorsulfonic Acid. Polymers (Basel) 2023; 15:2674. [PMID: 37376320 DOI: 10.3390/polym15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation is a powerful strategy to improve the differentiation of neural stem cells into neurons. Such an approach can be implemented, in association with biomaterials and nanotechnology, for the development of new therapies for neurological diseases, including direct cell transplantation and the development of platforms for drug screening and disease progression evaluation. Poly(aniline):camphorsulfonic acid (PANI:CSA) is one of the most well-studied electroconductive polymers, capable of directing an externally applied electrical field to neural cells in culture. There are several examples in the literature on the development of PANI:CSA-based scaffolds and platforms for electrical stimulation, but no review has examined the fundamentals and physico-chemical determinants of PANI:CSA for the design of platforms for electrical stimulation. This review evaluates the current literature regarding the application of electrical stimulation to neural cells, specifically reviewing: (1) the fundamentals of bioelectricity and electrical stimulation; (2) the use of PANI:CSA-based systems for electrical stimulation of cell cultures; and (3) the development of scaffolds and setups to support the electrical stimulation of cells. Throughout this work, we critically evaluate the revised literature and provide a steppingstone for the clinical application of the electrical stimulation of cells using electroconductive PANI:CSA platforms/scaffolds.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Biology and Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
9
|
Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, Kesharwani P, Mokhtarzadeh A, Oroojalian F, Sahebkar A. Conductive and Semiconductive Nanocomposite-Based Hydrogels for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200526. [PMID: 35822350 DOI: 10.1002/adhm.202200526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide and the most common cause is myocardial infarction. Therefore, appropriate approaches should be used to repair damaged heart tissue. Recently, cardiac tissue engineering approaches have been extensively studied. Since the creation of the nature of cardiovascular tissue engineering, many advances have been made in cellular and scaffolding technologies. Due to the hydrated and porous structures of the hydrogel, they are used as a support matrix to deliver cells to the infarct tissue. In heart tissue regeneration, bioactive and biodegradable hydrogels are required by simulating native tissue microenvironments to support myocardial wall stress in addition to preserving cells. Recently, the use of nanostructured hydrogels has increased the use of nanocomposite hydrogels and has revolutionized the field of cardiac tissue engineering. Therefore, to overcome the limitation of the use of hydrogels due to their mechanical fragility, various nanoparticles of polymers, metal, and carbon are used in tissue engineering and create a new opportunity to provide hydrogels with excellent properties. Here, the types of synthetic and natural polymer hydrogels, nanocarbon-based hydrogels, and other nanoparticle-based materials used for cardiac tissue engineering with emphasis on conductive nanostructured hydrogels are briefly introduced.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| |
Collapse
|
10
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
12
|
Dixon DT, Gomillion CT. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater 2021; 13:1. [PMID: 35076518 PMCID: PMC8788550 DOI: 10.3390/jfb13010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bone tissue engineering strategies attempt to regenerate bone tissue lost due to injury or disease. Three-dimensional (3D) scaffolds maintain structural integrity and provide support, while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. Through this, scaffolds that show great osteoinductive abilities as well as desirable mechanical properties have been studied. Recently, scaffolding for engineered bone-like tissues have evolved with the use of conductive materials for increased scaffold bioactivity. These materials make use of several characteristics that have been shown to be useful in tissue engineering applications and combine them in the hope of improved cellular responses through stimulation (i.e., mechanical or electrical). With the addition of conductive materials, these bioactive synthetic bone substitutes could result in improved regeneration outcomes by reducing current factors limiting the effectiveness of existing scaffolding materials. This review seeks to overview the challenges associated with the current state of bone tissue engineering, the need to produce new grafting substitutes, and the promising future that conductive materials present towards alleviating the issues associated with bone repair and regeneration.
Collapse
Affiliation(s)
- Damion T. Dixon
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA;
| | - Cheryl T. Gomillion
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|