1
|
Monistero V, Vicari N, Prati P, Bragoni R, Gazzola A, Sala L, Maisano A, Moroni P, Bronzo V, Luini MV, Castiglioni B, Cremonesi P. A rapid and reliable method for early Legionella pneumophila identification and characterization in support of the epidemiology study. Front Microbiol 2024; 15:1452861. [PMID: 39439937 PMCID: PMC11495126 DOI: 10.3389/fmicb.2024.1452861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Legionnaires' disease is a severe pneumonia predominantly caused by Legionella pneumophila (Lp), whose major reservoirs are artificial water systems. As most human infections are caused by L. pneumophila serogroup 1 (Lp1), a reliable method for Lp distinction can be crucial for bacterial spread prevention. As the ability to withstand in environments and to cause the waterborne disease is strongly related to specific genes, the identification of virulent strains can be of great relevance to implement water environmental monitoring and to contain harmful outbreaks to public health. We aimed to test an assay for Lp identification among different Legionella species, and to determine the serogroups. Additionally, we investigated the carriage of virulence and antimicrobial resistance genes. Methods A total of 90 Legionella spp. isolates identified by phenotypic tests were subjected to the designed quantitative PCR assay targeting specific mip for Lp, wzm for Lp1, pvcA and ahpD for biofilm production. Eleven serogroups were investigated in all our isolates tested positive for mip gene, subsequently analyzed for 12 virulence and 8 antimicrobial resistance genes. Results Only the 70 Lp isolates were positive for mip. Out of 27 Lp isolates belonging to serogroup 1 based on agglutination test, 23 (85.2%) carried wzm. The presence of ahpD and pvcA was found in 94.3 and 98.6% of Lp isolates, respectively. By multiplex PCR, all 23 wzm-positive strains were confirmed as serogroup 1 that was the most predominant (33%). At least one virulence gene was detected in all Lp isolates. The most frequent gene was ispE (100%), followed by issD (96%), icmK and enhC (93%), cpxA (91%), rtxA2 (74%), lvhB8-B9 (61%), and prpA (54%). The other genes were less diffused in Lp strains (rtxA1, 44%; lvhB3-B4, 47%; pvcB, 27%; lvrE, 24%). Of the macrolide resistance genes, the ereA was found in 84% of Lp strains, while only 14 (20%) harbored the lpeAB among the efflux pump genes. Conclusion The assays validated in this study enable the simultaneous Lp and Lp1 detection. The differentiation of Lp strains according to their virulence properties could be useful to predict the bacterial ability to survive and to cause the disease.
Collapse
Affiliation(s)
- Valentina Monistero
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Nadia Vicari
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Paola Prati
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Roldano Bragoni
- Diagnostic Section of Pavia, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Pavia, Italy
| | - Alessandra Gazzola
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Lorenza Sala
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Antonio Maisano
- Diagnostic Section of Lodi, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna - IZSLER, Lodi, Italy
| | - Paolo Moroni
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali - MiLab, University of Milan, Lodi, Italy
| | - Mario Vittorio Luini
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology – IBBA-CNR, National Research Council, Lodi, Italy
| |
Collapse
|
2
|
Barbosa A, Azevedo NF, Goeres DM, Cerqueira L. Ecology of Legionella pneumophila biofilms: The link between transcriptional activity and the biphasic cycle. Biofilm 2024; 7:100196. [PMID: 38601816 PMCID: PMC11004079 DOI: 10.1016/j.bioflm.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
There has been considerable discussion regarding the environmental life cycle of Legionella pneumophila and its virulence potential in natural and man-made water systems. On the other hand, the bacterium's morphogenetic mechanisms within host cells (amoeba and macrophages) have been well documented and are linked to its ability to transition from a non-virulent, replicative state to an infectious, transmissive state. Although the morphogenetic mechanisms associated with the formation and detachment of the L. pneumophila biofilm have also been described, the capacity of the bacteria to multiply extracellularly is not generally accepted. However, several studies have shown genetic pathways within the biofilm that resemble intracellular mechanisms. Understanding the functionality of L. pneumophila cells within a biofilm is fundamental for assessing the ecology and evaluating how the biofilm architecture influences L. pneumophila survival and persistence in water systems. This manuscript provides an overview of the biphasic cycle of L. pneumophila and its implications in associated intracellular mechanisms in amoeba. It also examines the molecular pathways and gene regulation involved in L. pneumophila biofilm formation and dissemination. A holistic analysis of the transcriptional activities in L. pneumophila biofilms is provided, combining the information of intracellular mechanisms in a comprehensive outline. Furthermore, this review discusses the techniques that can be used to study the morphogenetic states of the bacteria within biofilms, at the single cell and population levels.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Darla M. Goeres
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Laura Cerqueira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
Deutscher RCE, Safa Karagöz M, Purder PL, Kolos JM, Meyners C, Oki Sugiarto W, Krajczy P, Tebbe F, Geiger TM, Ünal C, Hellmich UA, Steinert M, Hausch F. [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip-Dependent and LpMip-Independent Mechanisms. Chembiochem 2023; 24:e202300442. [PMID: 37489700 DOI: 10.1002/cbic.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - M Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Patrick L Purder
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederike Tebbe
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438, Frankurt/Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Helmholtz Centre for Infection Research, 38106, Braunschweig, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Distel JS, Di Venanzio G, Mackel JJ, Rosen DA, Feldman MF. Replicative Acinetobacter baumannii strains interfere with phagosomal maturation by modulating the vacuolar pH. PLoS Pathog 2023; 19:e1011173. [PMID: 37294840 DOI: 10.1371/journal.ppat.1011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii, but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called Acinetobacter Containing Vacuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the alveolar macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.
Collapse
Affiliation(s)
- Jesus S Distel
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joseph J Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
5
|
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front Immunol 2022; 13:955407. [PMID: 35990632 PMCID: PMC9382241 DOI: 10.3389/fimmu.2022.955407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins were first described, as endolysosomal proteolytic enzymes in reference to the organelles where they degrade the bulk of endogenous and exogenous substrates in a slightly acidic environment. These substrates include pathogens internalized via endocytosis and/or marked for destruction by autophagy. However, the role of cathepsins during infection far exceeds that of direct digestion of the pathogen. Cathepsins have been extensively investigated in the context of tumour associated immune cells and chronic inflammation. Several cathepsin-dependent immune responses develop in the endocytic pathway while others take place in the cytosol, the nucleus, or in the extracellular space. In this review we highlight the spatial localization of cathepsins and their implications in immune activation and resolution pathways during infection.
Collapse
|
6
|
Ectopic Expression of Human Thymosin β4 Confers Resistance to Legionella pneumophila during Pulmonary and Systemic Infection in Mice. Infect Immun 2021; 89:IAI.00735-20. [PMID: 33468581 DOI: 10.1128/iai.00735-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tβ4-overexpressing transgenic (Tg) mice to investigate the role of Tβ4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tβ4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tβ4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tβ4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tβ4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1β and TNF-α proteins was also reduced in Tβ4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tβ4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tβ4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tβ4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tβ4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.
Collapse
|
7
|
Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol Rev 2020; 297:39-52. [PMID: 32737894 PMCID: PMC7496135 DOI: 10.1111/imr.12910] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury, thus mounting regulated immune response. Inflammasomes are highly sophisticated and effective orchestrators of innate immunity. These oligomerized multiprotein complexes are at the center of various innate immune pathways, including modulation of the cytoskeleton, production and maturation of cytokines, and control of bacterial growth and cell death. Inflammasome assembly often results in caspase‐1 activation, which is an inflammatory caspase that is involved in pyroptotic cell death and release of inflammatory cytokines in response to pathogen patterns and endogenous danger stimuli. However, the nature of stimuli and inflammasome components are diverse. Caspase‐1 activation mediated release of mature IL‐1β and IL‐18 in response to canonical stimuli initiated by NOD‐like receptor (NLR), and apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC). On the other hand, caspase‐11 delineates a non‐canonical inflammasome that promotes pyroptotic cell death and non‐pyroptotic functions in response to non‐canonical stimuli. Caspase‐11 in mice and its homologues in humans (caspase‐4/5) belong to caspase‐1 family of cysteine proteases, and play a role in inflammation. Knockout mice provided new genetic tools to study inflammatory caspases and revealed the role of caspase‐11 in mediating septic shock in response to lethal doses of lipopolysaccharide (LPS). Recognition of LPS mediates caspase‐11 activation, which promotes a myriad of downstream effects that include pyroptotic and non‐pyroptotic effector functions. Therefore, the physiological functions of caspase‐11 are much broader than its previously established roles in apoptosis and cytokine maturation. Inflammation induced by exogenous or endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. Consequently, the existence of sophisticated mechanisms that tightly regulate the specificity and sensitivity of inflammasome pathways provides a fine‐tuning balance between adequate immune response and minimal tissue damage. In this review, we summarize effector functions of caspase‐11.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Disease Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Fricke C, Xu J, Jiang F, Liu Y, Harms H, Maskow T. Rapid culture-based detection of Legionella pneumophila using isothermal microcalorimetry with an improved evaluation method. Microb Biotechnol 2020; 13:1262-1272. [PMID: 32212253 PMCID: PMC7264898 DOI: 10.1111/1751-7915.13563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The detection and quantification of Legionella pneumophila (responsible for legionnaire's disease) in water samples can be achieved by various methods. However, the culture-based ISO 11731:2017, which is based on counts of colony-forming units per ml (CFU·ml-1 ) is still the gold standard for quantification of Legionella species (spp.). As a powerful alternative, we propose real-time monitoring of the growth of L. pneumophila using an isothermal microcalorimeter (IMC). Our results demonstrate that, depending on the initial concentration of L. pneumophila, detection times of 24-48 h can be reliably achieved. IMC may, therefore, be used as an early warning system for L. pneumophila contamination. By replacing only visual detection of growth by a thermal sensor, but otherwise maintaining the standardized protocol of the ISO 11731:2017, the new procedure could easily be incorporated into existing standards. The exact determination of the beginning of metabolic heat is often very difficult because at the beginning of the calorimetric signal the thermal stabilization and the metabolic heat development overlap. Here, we propose a new data evaluation based on the first derivation of the heat flow signal. The improved evaluation method can further reduce detection times and significantly increase the reliability of the IMC approach.
Collapse
Affiliation(s)
- Christian Fricke
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Juan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Feng‐Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Hauke Harms
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Thomas Maskow
- Department of Environmental MicrobiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
9
|
An Advanced Risk Modeling Method to Estimate Legionellosis Risks Within a Diverse Population. WATER 2019. [DOI: 10.3390/w12010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quantitative microbial risk assessment (QMRA) is a computational science leveraged to optimize infectious disease controls at both population and individual levels. Often, diverse populations will have different health risks based on a population’s susceptibility or outcome severity due to heterogeneity within the host. Unfortunately, due to a host homogeneity assumption in the microbial dose-response models’ derivation, the current QMRA method of modeling exposure volume heterogeneity is not an accurate method for pathogens such as Legionella pneumophila. Therefore, a new method to model within-group heterogeneity is needed. The method developed in this research uses USA national incidence rates from the Centers for Disease Control and Prevention (CDC) to calculate proxies for the morbidity ratio that are descriptive of the within-group variability. From these proxies, an example QMRA model is developed to demonstrate their use. This method makes the QMRA results more representative of clinical outcomes and increases population-specific precision. Further, the risks estimated demonstrate a significant difference between demographic groups known to have heterogeneous health outcomes after infection. The method both improves fidelity to the real health impacts resulting from L. pneumophila infection and allows for the estimation of severe disability-adjusted life years (DALYs) for Legionnaires’ disease, moderate DALYs for Pontiac fever, and post-acute DALYs for sequela after recovering from Legionnaires’ disease.
Collapse
|
10
|
The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017; 85:IAI.00897-16. [PMID: 28138020 DOI: 10.1128/iai.00897-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.
Collapse
|
11
|
Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nat Microbiol 2016; 1:16054. [DOI: 10.1038/nmicrobiol.2016.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
|
12
|
Abdelaziz DHA, Khalil H, Cormet-Boyaka E, Amer AO. The cooperation between the autophagy machinery and the inflammasome to implement an appropriate innate immune response: do they regulate each other? Immunol Rev 2016; 265:194-204. [PMID: 25879294 DOI: 10.1111/imr.12288] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is originally described as the main catabolic pathway responsible for maintaining intracellular nutritional homeostasis that involves the formation of a unique vacuole, the autophagosome, and the interaction with the endosome-lysosome pathways. This conserved machinery plays a key role in immune-protection against different invaders, including pathogenic bacteria, intracellular parasites, and some viruses like herpes simplex and hepatitis C virus. Importantly, autophagy is linked to a number of human diseases and disorders including neurodegenerative disease, Crohn's disease, type II diabetes, tumorigenesis, cardiomyopathy, and fatty liver disease. On the other hand, inflammasomes are multiprotein platforms stimulated upon several environmental conditions and microbial infection. Once assembled, the inflammasomes mediate the maturation of pro-inflammatory cytokines and promote phagosome-lysosome fusion to sustain an innate immune response. The intersections between autophagy and inflammasome have been observed in various diseases and microbial infections. This review highlights the molecular aspects involved in autophagy and inflammasome interactions during different medical conditions and microbial infections.
Collapse
Affiliation(s)
- Dalia H A Abdelaziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | | | | |
Collapse
|
13
|
Caution K, Gavrilin MA, Tazi M, Kanneganti A, Layman D, Hoque S, Krause K, Amer AO. Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance. Sci Rep 2015; 5:18479. [PMID: 26686473 PMCID: PMC4685268 DOI: 10.1038/srep18479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 01/19/2023] Open
Abstract
Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking.
Collapse
Affiliation(s)
- Kyle Caution
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Mikhail A Gavrilin
- Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Mia Tazi
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Apurva Kanneganti
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Daniel Layman
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Sheshadri Hoque
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus OH 43210.,Dorothy M. Davis Heart and Lung Research Institute, and The Ohio State University, Columbus OH 43210
| |
Collapse
|
14
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
15
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
16
|
Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis. J Virol 2013; 87:3655-67. [PMID: 23302887 DOI: 10.1128/jvi.02667-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognition receptors and caspase 1 in inflammasome complexes, but its role in WNV immunopathogenesis is not defined. Here, we demonstrate that ASC is essential for interleukin-1β (IL-1β) production and development of effective host immunity against WNV. ASC-deficient mice exhibited increased susceptibility to WNV infection, and reduced survival was associated with enhanced virus replication in the peripheral tissues and central nervous system (CNS). Infection of cultured bone marrow-derived dendritic cells showed that ASC was essential for the activation of caspase 1, a key component of inflammasome assembly. ASC(-/-) mice exhibited attenuated levels of proinflammatory cytokines in the serum. Intriguingly, infected ASC(-/-) mice also displayed reduced levels of alpha interferon (IFN-α) and IgM in the serum, indicating the overall protective role of ASC in restricting WNV infection. However, brains from ASC(-/-) mice displayed unrestrained inflammation, including elevated levels of proinflammatory cytokines and chemokines, such as IFN-γ, CCL2, and CCL5, which correlated with more pronounced activation of the astrocytes, enhanced infiltration of peripheral immune cells in the CNS, and increased neuronal cell death. Collectively, our data provide new insights into the role of ASC as an essential modulator of inflammasome-dependent and -independent immune responses to effectively control WNV infection.
Collapse
|
17
|
Hassan H, Amer AO. Cell intrinsic roles of apoptosis-associated speck-like protein in regulating innate and adaptive immune responses. ScientificWorldJournal 2011; 11:2418-23. [PMID: 22194672 PMCID: PMC3236380 DOI: 10.1100/2011/429192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/17/2023] Open
Abstract
The role of apoptosis-associated speck-Like protein (ASC) in the assembly of the inflammasome complex within macrophages has been elucidated in several studies. In this particular role, ASC functions as an adaptor protein by linking nod-like receptors (NLRs) and procaspase-1, thereby leading to the activation of caspase-1 to cleave inflammatory cytokines IL-1β and IL-18 and inducing pyroptosis. It has been noted that ASC maintains inflammasome-independent roles, including but not limited to controlling the expression of Dock2 and mitogen-activated protein kinases (MAPK/ERK2) and regulating the NF-κB pathway. This paper will emphasize the major roles of ASC during pathogen infection, the mechanisms by which it mediates inflammation, and discuss its more recently discovered functions.
Collapse
Affiliation(s)
- Hoda Hassan
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, and Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|