1
|
Kim J, Kim H, Kaown D, Lee KK. Thoron, radon and microbial community as supportive indicators of seismic activity in groundwater. Sci Rep 2024; 14:25955. [PMID: 39472524 PMCID: PMC11522488 DOI: 10.1038/s41598-024-77011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Earthquakes have a significant impact on groundwater environments as well as human life. However, identifying active and affected zones from seismic events using isotopic and microbial diversity indicators remains a challenging frontier. To validate the applicability of this coupled method for real-time analysis, we analyzed thoron (220Rn), radon (222Rn), microbial community compositions, and hydrochemistry in groundwater samples during the 2017 Pohang earthquake for the first time. We observed the detection of 220Rn in groundwater right before the aftershocks, with a high correlation to 222Rn concentrations. This indicates that 220Rn and 222Rn can serve as reliable seismic indicators for real-time analysis. The microbial data can assist in identifying affected groundwater zones, particularly when real-time detection of 220Rn is not feasible. At the phylum level, Peregrinibacteria and Firmicutes were only found in samples with detected thoron. At the genus level, hydrogen-oxidizing or sulfur-oxidizing bacteria could serve as indicators of active zones. Two statistical analyses, self-organizing map (SOM) and principal component analysis (PCA) using hydrochemical parameters, also correlated with the results from these coupled indicators. This study demonstrates the theoretical and practical applicability of 220Rn, 222Rn, and microbial community compositions as new multi-faceted ecological indicators, whether for real-time analysis or otherwise.
Collapse
Affiliation(s)
- Jaeyeon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Heinze BM, Küsel K, Jehmlich N, von Bergen M, Taubert M. Metabolic versatility enables sulfur-oxidizers to dominate primary production in groundwater. WATER RESEARCH 2023; 244:120426. [PMID: 37597444 DOI: 10.1016/j.watres.2023.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
High rates of CO2 fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% 13CO2 stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO2-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform 13C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% 13C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H2 oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H2 oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.
Collapse
Affiliation(s)
- Beatrix M Heinze
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Martin von Bergen
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany; Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Brüderstr. 32, Leipzig 04103, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
3
|
Bacterial Communities in a Gradient of Abiotic Factors Near a Sulfide Thermal Spring in Northern Baikal. DIVERSITY 2023. [DOI: 10.3390/d15020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The structure and diversity of microbial communities developing in the combined gradient of temperature (44–19 °C), as well as concentration of oxygen (0–10 mg/L) and hydrogen sulfide (33–0.7 mg/L), were studied in the thermal sulfide spring on the coast of Northern Lake Baikal. The predominance of bacteria participating in sulfur and nitrogen cycles and significant changes in the composition of microbial communities were noted at changing physicochemical conditions. Thiovirga sp. (sulfur-oxidizing bacteria, up to 37%) and Azonexus sp. (nitrogen-fixing bacteria, up to 43%) were dominant at high temperatures and concentrations of hydrogen sulfide in two hydrotherms. In addition, a significant contribution of the Rhodocyclaceae family (up to 51%) which is involved in the denitrification processes, and Acetoanaerobium sp. (up to 20%) fixing carbon oxide were found in the spring water. In the stream, mainly oxygenic cyanobacteria (up to 56%) developed at a temperature of 33 °C, in the presence of hydrogen sulfide and oxygen. In addition, sulfur bacteria of the genus Thiothrix (up to 48%) found in epibiotic communities of benthic animals of Lake Baikal were present here. Thiothrix sp. formed massive fouling in the zone of mixing lake and thermal waters with a significant contribution of hydrogen-oxidizing bacteria of the genus Hydrogenophaga (up to 22.5%). As well as chemolitho- and phototrophic bacteria, chemoorganotrophs (phyla Firmicutes, Chloroflexi, Desulfobacterota, Nitrospirota, Fibrobacterota, etc.) have been identified in all communities. The chemical parameters of water in spring and coastal zones indicate a significant change in the composition of thermal waters occurring with the participation of diverse microbial communities that contribute to the assimilation of inorganic components of mineral thermal waters.
Collapse
|
4
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
5
|
Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds. Life (Basel) 2021; 11:life11090883. [PMID: 34575032 PMCID: PMC8468739 DOI: 10.3390/life11090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.
Collapse
|
6
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
8
|
Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, Oyagi H, Tamaki H, Nakano SI. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. MICROBIOME 2021; 9:24. [PMID: 33482922 PMCID: PMC7825169 DOI: 10.1186/s40168-020-00974-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. RESULTS Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7-101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. CONCLUSIONS Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future. Video abstract.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Zurich, Switzerland
| | - Cristiana Callieri
- CNR, IRSA Institute of Water Research, Largo Tonolli 50, 28922, Verbania, Italy
| | - Atsushi Tanaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hideo Oyagi
- Faculty of Policy Studies, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya, Aichi, 466-8673, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
9
|
Li W, Zhang M, Kang D, Chen W, Yu T, Xu D, Zeng Z, Li Y, Zheng P. Mechanisms of sulfur selection and sulfur secretion in a biological sulfide removal (BISURE) system. ENVIRONMENT INTERNATIONAL 2020; 137:105549. [PMID: 32086075 DOI: 10.1016/j.envint.2020.105549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Biological desulfurization technology is a sustainable process for the sulfide removal from biogas, which has multiple advantages. In this study, a biological sulfide removal (BISURE) system was established to investigate the working performances and process mechanisms. The results showed that the sulfide removal rate was 2.30 kg-S/(m3 d), the sulfide removal efficiency was higher than 98%, the sulfur production rate was 1.76 kg-S/(m3 d), the sulfur selectivity was 75.02 ± 3.63% and the main form of products (sulfur compounds) was Rosickyite-S and S8. The performance of BISURE system was supported by the dominant genus (abundance more than 60%) of sulfur-oxidizing bacteria (SOB) which shifted to Thiovirga at the high SLR. The sqr and dsrA genes could serve as the indicators for the pathway of two-step sulfide oxidation, i.e. "partial sulfide oxidation (PSO, sulfide → sulfur)" and "complete sulfide oxidation (CSO, sulfur → sulfate)". The sulfur selectivity was improved by enhancing PSO and inhibiting CSO with the indication of two genes. The cellular sulfur secretion was revealed, and the "outer-membrane vesicles (OMVs)-dependent" sulfur-secreting hypothesis was proposed to explain the transportation of elemental sulfur from inside to outside of SOB cells. The findings of this work provide a new perspective to understand the sulfur selection of sulfide bio-oxidation and the sulfur secretion of SOB cells so as to promote the development of biological desulfurization technology.
Collapse
Affiliation(s)
- Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tao Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuo Zeng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Dong Y, Sanford RA, Inskeep WP, Srivastava V, Bulone V, Fields CJ, Yau PM, Sivaguru M, Ahrén D, Fouke KW, Weber J, Werth CR, Cann IK, Keating KM, Khetani RS, Hernandez AG, Wright C, Band M, Imai BS, Fried GA, Fouke BW. Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats. ASTROBIOLOGY 2019; 19:1442-1458. [PMID: 31038352 PMCID: PMC6918859 DOI: 10.1089/ast.2018.1965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The evolutionarily ancient Aquificales bacterium Sulfurihydrogenibium spp. dominates filamentous microbial mat communities in shallow, fast-flowing, and dysoxic hot-spring drainage systems around the world. In the present study, field observations of these fettuccini-like microbial mats at Mammoth Hot Springs in Yellowstone National Park are integrated with geology, geochemistry, hydrology, microscopy, and multi-omic molecular biology analyses. Strategic sampling of living filamentous mats along with the hot-spring CaCO3 (travertine) in which they are actively being entombed and fossilized has permitted the first direct linkage of Sulfurihydrogenibium spp. physiology and metabolism with the formation of distinct travertine streamer microbial biomarkers. Results indicate that, during chemoautotrophy and CO2 carbon fixation, the 87-98% Sulfurihydrogenibium-dominated mats utilize chaperons to facilitate enzyme stability and function. High-abundance transcripts and proteins for type IV pili and extracellular polymeric substances (EPSs) are consistent with their strong mucus-rich filaments tens of centimeters long that withstand hydrodynamic shear as they become encrusted by more than 5 mm of travertine per day. Their primary energy source is the oxidation of reduced sulfur (e.g., sulfide, sulfur, or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. The formation of elevated travertine ridges permits the Sulfurihydrogenibium-dominated mats to create a shallow platform from which to access low levels of dissolved oxygen at the virtual exclusion of other microorganisms. These ridged travertine streamer microbial biomarkers are well preserved and create a robust fossil record of microbial physiological and metabolic activities in modern and ancient hot-spring ecosystems.
Collapse
Affiliation(s)
- Yiran Dong
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Robert A. Sanford
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - William P. Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
- Division School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Christopher J. Fields
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Peter M. Yau
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl Zeiss Labs @ Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dag Ahrén
- Microbial Ecology Group, Bioinformatics Infrastructure for Life Sciences, Department of Biology, Lund University, Lund, Sweden
- Pufendorf Institute for Advanced Sciences, Lund University, Lund, Sweden
| | - Kyle W. Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Geology and Environmental Sciences, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Joseph Weber
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Charles R. Werth
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Civil, Architectural and Environmental Engineering, University of Texas Austin, Texas, USA
| | - Isaac K. Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathleen M. Keating
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Radhika S. Khetani
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chris Wright
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mark Band
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Brian S. Imai
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Glenn A. Fried
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl Zeiss Labs @ Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce W. Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl Zeiss Labs @ Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Pufendorf Institute for Advanced Sciences, Lund University, Lund, Sweden
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Thaler AD, Amon D. 262 Voyages Beneath the Sea: a global assessment of macro- and megafaunal biodiversity and research effort at deep-sea hydrothermal vents. PeerJ 2019; 7:e7397. [PMID: 31404427 PMCID: PMC6688594 DOI: 10.7717/peerj.7397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
For over 40 years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here, we provide the first systematic assessment of macrofaunal and megafaunal biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of family-level incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.
Collapse
Affiliation(s)
- Andrew D Thaler
- Blackbeard Biologic: Science and Environmental Advisors, St. Michaels, MD, USA.,Center for Environmental Science, Horn Point Laboratory, University of Maryland, Cambridge, MD, USA
| | - Diva Amon
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
12
|
Whaley-Martin K, Jessen GL, Nelson TC, Mori JF, Apte S, Jarolimek C, Warren LA. The Potential Role of Halothiobacillus spp. in Sulfur Oxidation and Acid Generation in Circum-Neutral Mine Tailings Reservoirs. Front Microbiol 2019; 10:297. [PMID: 30906283 PMCID: PMC6418380 DOI: 10.3389/fmicb.2019.00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
The biogeochemistry of acid mine drainage (AMD) derived from waste rock associated sulfide mineral oxidation is relatively well-characterized and linked to Acidithiobacillus spp.. However, little is understood about the microbial communities and sulfur cycling before AMD develops, a key component of its prevention. This study aimed to examine circum-neutral mining impacted water (MIW) communities and its laboratory enrichments for sulfur oxidizing bacteria (SoxBac). MIW in situ microbial communities differed in diversity, structure and relative abundance consistent with site specific variations in total aqueous sulfur concentrations (TotS; ~2-17 mM), pH (3.67-7.34), and oxygen (22-93% saturation). However, the sulfur oxidizer, Halothiobacillus spp. dominated seven of the nine total SoxBac enrichment communities (~76-100% relative abundance), spanning three of the four mines. The presence and relative abundance of the identified sixteen known and five unclassified Halothiobacillus spp. here, were the important clustering determinants across parent MIW and enrichment communities. Further, the presence of Halothiobacillus spp. was associated with driving the pH <4 in enrichment experiments, and the combination of specific Halothiobacillus spp. in the enrichments affected the observed acid to sulfate ratios indicating differential sulfur cycling. Halothiobacillus spp. also dominated the parent communities of the two acidic MIWs providing corroborating evidence for its active role in net acid generation within these waters. These results identify a putative indicator organism specific to mine tailings reservoirs and highlight the need for further study of tailings associated sulfur cycling for better mine management and environmental stewardship.
Collapse
Affiliation(s)
- Kelly Whaley-Martin
- Civil and Mineral Engineering Department, University of Toronto, Toronto, ON, Canada
| | - Gerdhard L Jessen
- Civil and Mineral Engineering Department, University of Toronto, Toronto, ON, Canada
| | | | - Jiro F Mori
- Civil and Mineral Engineering Department, University of Toronto, Toronto, ON, Canada
| | - Simon Apte
- Commonwealth Scientific Industry and Research Organization, Clayton, VIC, Australia
| | - Chad Jarolimek
- Commonwealth Scientific Industry and Research Organization, Clayton, VIC, Australia
| | - Lesley A Warren
- Civil and Mineral Engineering Department, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Graves D, Smith JJ, Chen L, Kreinberg A, Wallace B, White R. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 201:357-365. [PMID: 28692835 DOI: 10.1016/j.jenvman.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Flue gas desulfurization (FGD) is a well-established air treatment technology for coal and oil combustion gases that commonly uses lime or pulverized limestone aqueous slurries to precipitate sulfur dioxide (SO2) as crystalline calcium salts. Under forced oxidation (excess oxygen) conditions, FGD byproduct contains almost entirely (>92%) gypsum (CaSO4·2H2O), a useful and marketable commodity. In contrast, FGD byproduct formed in oxygen deficient oxidation systems contains a high percentage of hannebachite (CaSO3·0.5H2O) to yield a material with no commercial value, poor dewatering characteristics, and that is typically disposed in landfills. Hannebachite in FGD byproduct can be chemically converted to gypsum; however, the conditions that support rapid formation of gypsum require large quantities of acids or oxidizers. This work describes a novel, patent pending application of microbial physiology where a natural consortium of sulfur-oxidizing bacteria (SOB) was used to convert hannebachite-enriched FGD byproduct into a commercially valuable, gypsum-enriched product (US Patent Assignment 503373611). To optimize the conversion of hannebachite into gypsum, physiological studies on the SOB were performed to define their growth characteristics. The SOB were found to be aerobic, mesophilic, neutrophilic, and dependent on a ready supply of ammonia. They were capable of converting hannebachite to gypsum at a rate of approximately five percent per day when the culture was applied to a 20 percent FGD byproduct slurry and SOB growth medium. 16S rDNA sequencing revealed that the SOB consortium contained a variety of different bacterial genera including both SOB and sulfate-reducing bacteria. Halothiobacillus, Thiovirga and Thiomonas were the dominant sulfur-oxidizing genera.
Collapse
Affiliation(s)
- Duane Graves
- Geosyntec Consultants Inc., Knoxville, TN, 37922, USA.
| | | | - Linxi Chen
- Geosyntec Consultants Inc., Knoxville, TN, 37922, USA
| | | | | | - Robby White
- Geosyntec Consultants, Inc., Greenville, SC, 29601, USA
| |
Collapse
|
14
|
Microbial communities within the water column of freshwater Lake Radok, East Antarctica: predominant 16S rDNA phylotypes and bacterial cultures. Polar Biol 2016. [DOI: 10.1007/s00300-016-2008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kan J, Clingenpeel S, Dow CL, McDermott TR, Macur RE, Inskeep WP, Nealson KH. Geochemistry and Mixing Drive the Spatial Distribution of Free-Living Archaea and Bacteria in Yellowstone Lake. Front Microbiol 2016; 7:210. [PMID: 26973602 PMCID: PMC4770039 DOI: 10.3389/fmicb.2016.00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1–0.8, 0.8–3.0, and 3.0–20 μm) were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV). Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surface water) to 25:1 (vent water). Microbial population structures (both Bacteria and Archaea) were assessed using 454-FLX sequencing with a total of 662,302 pyrosequencing reads for V1 and V2 regions of 16S rRNA genes. Non-metric multidimensional scaling (NMDS) analyses indicated that strong spatial distribution patterns existed from surface to deep vents for free-living Archaea and Bacteria in the lake. Along with pH, major vent-associated geochemical constituents including CH4, CO2, H2, DIC (dissolved inorganic carbon), DOC (dissolved organic carbon), SO42-, O2 and metals were likely the major drivers for microbial population structures, however, mixing events occurring in the lake also impacted the distribution patterns. Distinct Bacteria and Archaea were present among size fractions, and bigger size fractions included particle-associated microbes (> 3 μm) and contained higher predicted operational taxonomic unit richness and microbial diversities (genus level) than free-living ones (<0.8 μm). Our study represents the first attempt at addressing the spatial distribution of Bacteria and Archaea in Yellowstone Lake, and our results highlight the variable contribution of Archaea and Bacteria to the hydrogeochemical-relevant metabolism of hydrogen, carbon, nitrogen, and sulfur.
Collapse
Affiliation(s)
- Jinjun Kan
- Stroud Water Research Center, Avondale PA, USA
| | | | | | - Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman MT, USA
| | - Richard E Macur
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman MT, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman MT, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles CA, USA
| |
Collapse
|
16
|
Chloroflexi CL500-11 Populations That Predominate Deep-Lake Hypolimnion Bacterioplankton Rely on Nitrogen-Rich Dissolved Organic Matter Metabolism and C1 Compound Oxidation. Appl Environ Microbiol 2015; 82:1423-32. [PMID: 26682860 DOI: 10.1128/aem.03014-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat.
Collapse
|
17
|
Inskeep WP, Jay ZJ, Macur RE, Clingenpeel S, Tenney A, Lovalvo D, Beam JP, Kozubal MA, Shanks WC, Morgan LA, Kan J, Gorby Y, Yooseph S, Nealson K. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function. Front Microbiol 2015; 6:1044. [PMID: 26579074 PMCID: PMC4620420 DOI: 10.3389/fmicb.2015.01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 09/14/2015] [Indexed: 12/02/2022] Open
Abstract
Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007–2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50–90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous “streamer” communities of Inflated Plain and West Thumb (pH range 5–6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5–6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.
Collapse
Affiliation(s)
- William P Inskeep
- Thermal Biology Institute, Montana State University Bozeman, MT, USA ; Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Zackary J Jay
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Richard E Macur
- Center for Biofilm Engineering, Montana State University Bozeman, MT, USA
| | | | | | | | - Jacob P Beam
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Mark A Kozubal
- Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | | | | | - Jinjun Kan
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | - Yuri Gorby
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| | | | - Kenneth Nealson
- Department of Earth Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
18
|
Alafeefy AM, Abdel-Aziz HA, Vullo D, Al-Tamimi AMS, Al-Jaber NA, Capasso C, Supuran CT. Inhibition of carbonic anhydrases from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and S. azorense (SazCA) with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. Bioorg Med Chem 2014; 22:141-7. [DOI: 10.1016/j.bmc.2013.11.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 01/27/2023]
|
19
|
Clingenpeel S, Kan J, Macur RE, Woyke T, Lovalvo D, Varley J, Inskeep WP, Nealson K, McDermott TR. Yellowstone lake nanoarchaeota. Front Microbiol 2013; 4:274. [PMID: 24062731 PMCID: PMC3769629 DOI: 10.3389/fmicb.2013.00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022] Open
Abstract
Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park (YNP), where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR) were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels). However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp) demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (71 pyrosequencing reads) was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.
Collapse
|
20
|
The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides. Bioorg Med Chem 2013; 21:1534-8. [DOI: 10.1016/j.bmc.2012.07.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/29/2023]
|
21
|
Luca VD, Vullo D, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med Chem 2013; 21:1465-9. [DOI: 10.1016/j.bmc.2012.09.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 01/09/2023]
|
22
|
Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 2013; 8:e53350. [PMID: 23326417 PMCID: PMC3541193 DOI: 10.1371/journal.pone.0053350] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.
Collapse
Affiliation(s)
- Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Shang Wang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Brandon R. Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
| | - Joseph P. Peacock
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Qiuyuan Huang
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei Province, China
| | - Xiaoyang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources of Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan Province, China
| | - Wenjun Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources of Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan Province, China
| | - Jeremy A. Dodsworth
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Chuanlun Zhang
- State Key Laboratory of Marine Geology, School of Ocean of Earth Sciences, Tongji University, Shanghai, China
- Department of Marine Sciences, the University of Georgia, Athens, Georgia, United States of America
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Dijkstra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Bruce A. Hungate
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
23
|
Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C. Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett 2012; 22:7142-5. [DOI: 10.1016/j.bmcl.2012.09.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/05/2023]
|
24
|
De Luca V, Vullo D, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C. Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Bioorg Med Chem Lett 2012; 22:5630-4. [DOI: 10.1016/j.bmcl.2012.06.106] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 12/29/2022]
|
25
|
Okazaki Y, Hodoki Y, Nakano SI. Seasonal dominance of CL500-11 bacterioplankton (phylumChloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol 2012; 83:82-92. [DOI: 10.1111/j.1574-6941.2012.01451.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research; Kyoto University; Otsu; Shiga; Japan
| | - Yoshikuni Hodoki
- Center for Ecological Research; Kyoto University; Otsu; Shiga; Japan
| | - Shin-ichi Nakano
- Center for Ecological Research; Kyoto University; Otsu; Shiga; Japan
| |
Collapse
|
26
|
Klotz MG, Bryant DA, Hanson TE. The microbial sulfur cycle. Front Microbiol 2011; 2:241. [PMID: 22144979 PMCID: PMC3228992 DOI: 10.3389/fmicb.2011.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin G Klotz
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | | | | |
Collapse
|